

Today

1) The Probabilistic Method (applied to k-SAT)

- ↳ Via union bound
- ↳ Via independence
- ↳ via Lovasz Local Lemma

2) From the Probabilistic Method to Algorithms

Probabilistic Method Framework (to show (t) is possible)

- a) Define a random process
- b) Define bad events B_1, B_2, \dots and $\bar{B}_1 \cap \bar{B}_2 \cap \dots \rightarrow (*)$
- c) Show $\Pr(\bar{B}_1 \cap \bar{B}_2 \dots) > 0$
 - ↳ Via Union bound
 - ↳ Via independence
 - ↳ Via Lovasz Local Lemma...

A literal is a boolean variable or its negation X or \bar{X}

A Clause is the "or" of distinct literals $\bar{X}_1 \vee X_2 \vee X_3$
↳ k-Clause if exactly k literals $\uparrow 3\text{-clause}$

A k-SAT formula is the "and" of k -clauses (variables X_1, \dots, X_n , m clauses)

2-SAT: $(X_1 \vee X_2) \wedge (\bar{X}_1 \vee X_2) \wedge (X_1 \vee \bar{X}_2) \rightarrow$ satisfiable by $X_1 = X_2 = \text{true}$
 $(X_1 \vee X_2) \wedge (\bar{X}_1 \vee X_2) \wedge (X_1 \vee \bar{X}_2) \wedge (\bar{X}_1 \vee \bar{X}_2) \rightarrow$ not satisfiable b/c ≥ 1 true, ≥ 1 false by ends
but then a middle clause not satisfied

A k -SAT formula is satisfiable if \exists a truth assignment to its variables making it true

Intuition: Many variables + Few clauses = easy to satisfy

- (a) [Independently assign each $X_i = \begin{cases} \text{true w/ Pr. } 5 \\ \text{false w/ Pr. } 5 \end{cases}$]
- (b) [Let $B_i :=$ i th clause not satisfied so if $\bar{B}_1 \cap \bar{B}_2 \cap \dots$ then formula is satisfied]

Fact: Any k -SAT clause w/ $m \leq \frac{2}{e} - 1$ clauses is satisfiable (see above ex.)

- (c) [Have $\Pr(B_i) \leq \left(\frac{1}{2}\right)^k$ vi: so $\Pr(B_1 \cup B_2 \cup \dots) \leq \sum_i \Pr(B_i) < \frac{1}{2^k} \cdot \frac{2^k}{e} = \frac{1}{e} < 1$
so $\Pr(\bar{B}_1 \cap \bar{B}_2 \cap \dots) = 1 - \Pr(B_1 \cup B_2 \cup \dots) > 0$

A k -SAT formula has overlap α if each clause share variables w/ $\leq \alpha$ other clauses

$$(x_1 \vee x_2) \wedge (x_3 \vee x_4) \rightarrow \text{overlap 0}$$

$$(x_1 \vee \bar{x}_2) \wedge (x_1 \vee x_2) \wedge (x_1 \vee x_3) \wedge (\bar{x}_3 \vee x_4) \rightarrow \text{overlap 3}$$

Intuition: smaller $\alpha \rightarrow$ easier to satisfy.

Fact: any k -SAT formula w/ $\alpha = 0$ is satisfiable

Trivial to prove directly, but instructive to prove w/ probability

Why can't use Union bound approach

Algebraically: Have $\Pr(B_i) \leq \left(\frac{1}{2}\right)^k$ vi so $\Pr(B_1 \cup B_2 \cup \dots) \leq \sum_i \Pr(B_i) \leq \frac{1}{2^k} \cdot 2^k = 1$

Morally:

$$\text{Union bound}$$

A diagram of a cell with two nuclei, labeled N1 and N2. The cell is enclosed in a dashed line, and the nuclei are represented by ovals.

Independence

Good upper bound if
 B_i are (mostly) disjoint

Implies not disjoint
(assuming $\neq 0$ pr...)

Here B_i are independent \rightarrow not disjoint so UB is bad

$$(c) \left[\Pr(\bar{B}_i) = 1 - \frac{1}{2^k} > 0 \text{ vi } \text{ so } \Pr(\bar{B}_1 \cap \bar{B}_2 \cap \dots) = \prod_i \Pr(\bar{B}_i) > 0 \right. \\ \left. \begin{array}{l} B_i \text{ independent} \\ \text{so } \bar{B}_i \text{ independent} \end{array} \right] \bar{B}_i > 0 \forall$$

Fact: Any k -SAT formula w/ $\alpha \leq \frac{2^k}{e} - 1$ is satisfiable

Note: no dependence on # of clauses

If $\alpha > 0$ then B_i no longer independent

But small $\alpha \rightarrow$ "mostly independent"; need way to formalize

Event A is mutually independent of events $\mathcal{B} = \{B_1, B_2, \dots\}$ if \forall partitions $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$

$$\Pr_{B \in \mathcal{B}_1, B \in \mathcal{B}_2}(A \mid \bigcap B \cap \bigcap \bar{B}) = \Pr(A)$$

B_4 MI of $\{B_1, B_2\}$ in $(x_1 \vee \bar{x}_2) \wedge (\bar{x}_1 \vee x_2) \wedge (x_1 \vee x_3) \wedge (\bar{x}_3 \vee x_4)$

$B_1 \qquad B_2 \qquad B_3 \qquad B_4$

(\mathcal{B}, E) is a dependency graph of events \mathcal{B} if $\forall B \in \mathcal{B}$

B is MI from $\mathcal{B} \setminus \Gamma(B)$
neighbors of B

Symmetric LLL: Given events \mathcal{B} w/ dependency graph G of max-degree Δ
if $\exists P$ s.t.

- 1) $\Pr(B) \leq P \quad \forall B \in \mathcal{B}$
- 2) $e \cdot P \cdot (\Delta + 1) \leq 1$

then $\Pr_{B \in \mathcal{B}}(\bigcap \bar{B}) > 0$

Proof of fact using LLL

Let $\mathcal{B} := \{B_1, B_2, \dots\}$ and $\{B_i, B_j\} \in E$ if B_i, B_j share variables, let $P = \frac{1}{2^k}$ and $\Delta = \alpha$

(c) (\mathcal{B}, E) is a dependency graph w/ max-degree Δ

But $\Pr(B_i) \leq \frac{1}{2^k} = P \quad \forall i$

So $e \cdot P \cdot (\Delta + 1) \leq e \cdot \frac{1}{2^k} \cdot \frac{2^k}{e} = 1$

So by LLL $\Pr_{B \in \mathcal{B}}(\bigcap \bar{B}) > 0$

LLL as a Union Bound Generalization

Suppose n events B_1, B_2, \dots, B_n w/ $\Pr(B_i) \leq p \ \forall i$

UB: If $p \cdot n < 1$ then $\Pr(\bigcup B_i) \leq p \cdot n < 1$ so $\Pr(\bigcap \bar{B}_i) > 0$

LLL on Complete graph: If $e \cdot p \cdot (\Delta + 1) = e \cdot p \cdot n \leq 1$ then $\Pr(\bigcap \bar{B}_i) > 0$

From Probabilistic Method to Algorithms

For UB: boosting

Suppose # clauses is $\leq \frac{2^k}{e} - 1$ so $\Pr(1 \text{ random assignment not satisfying}) \leq \frac{1}{e}$

Assign X_1, X_2, \dots UAR

While \exists unsatisfied clause

Resample all variables

Return X_1, X_2, \dots

Analysis: $\Pr(\leq r \text{ iterations}) = 1 - \Pr(>r \text{ iterations}) \geq 1 - \left(\frac{1}{e}\right)^r$

so $\Pr(\leq \ln n \text{ iterations}) \geq 1 - \frac{1}{n}$

For LLL: Moser-Tardos Algorithm \rightarrow works for LLL in general

MT

Assign X_1, X_2, \dots UAR

While \exists unsatisfied clause C

Fix(C)

Return X_1, X_2, \dots, X_n

Fix(C)

Resample each $x_i \in C$

For each unsatisfied clause C' sharing variables w/ C \rightarrow possibly C itself
Fix(C')

Analysis: "entropy compression" shows $O(m)$ iterations in \mathbb{E}