

Today

Proof Strategies

- Guessing

- Charging

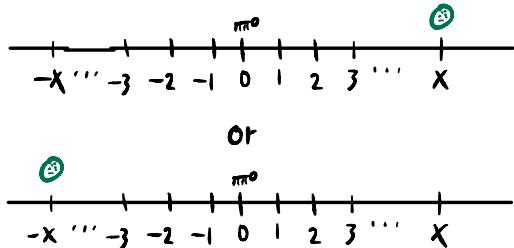
- Doubling

- Halving

- Averaging

Guessing: Algorithmic Problems easier when parameters of OPT are known
Often don't know parameters but can guess them

Ant on an (Infinite) Log



Goal: Minimize distance travelling

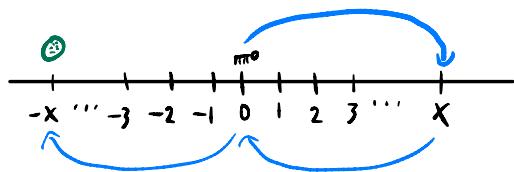
X Known

Until cookie

Go to x

Go to $-x$

Analysis



Ant travels $\leq 3x$

X Not Known

Until cookie

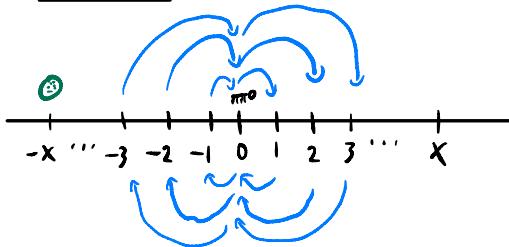
For $\hat{x} = 1, 2, 3, \dots$ (brute force guess "x")

Go to \hat{x}

Go to $-\hat{x}$

Go to 0

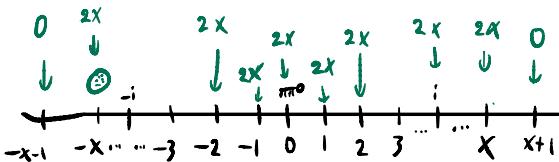
Analysis



Ant travels $1 + 1 + 1 + 1 + 2 + 2 + 2 + 2 + \dots + x + x + x + x$
 $= 4 \sum_{i=1}^x i = O(x^2)$

A Charging Perspective on Analysis

Charging: to upper bound $y \leq z$, create z dollars
Pay for each part of y w/ z dollars



So start w/ $2x+4x^2$ dollars

Each time ant goes $i \rightarrow i \pm 1$, reduce # dollars @ i by 1
 $\leq x$ iterations and $\$$ at each i reduced by ≤ 2 /iteration
so never run out of $\$$

→ Distance travelled \leq total # dollars $\leq 2x+4x^2 = O(x^2)$

X Not Known (assume x a power of 2) Analysis

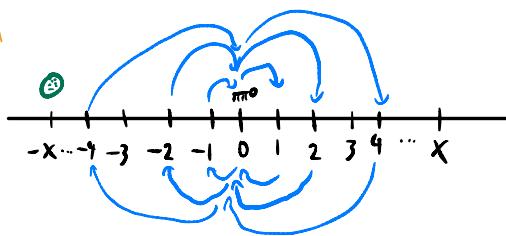
Until cookie (guess x as powers of 2)

For $\hat{x} = 1, 2, 4, 8, 16, \dots$

Go to \hat{x}

Go to $-\hat{x}$

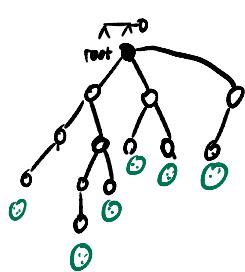
Go to 0



Ant travels $\leq 1 + 1 + 1 + 1 + 2 + 2 + 2 + 2 + 4 + 4 + 4 + \dots + x + x + \dots + 2^{\lfloor \log_2 x \rfloor}$

$$= 4 \sum_{i=0}^{\lfloor \log_2 x \rfloor} 2^i = 4 \sum_{i=0}^{\lfloor \log_2 x \rfloor} x/2^i = 4x \sum_{i=0}^{\lfloor \log_2 x \rfloor} \frac{1}{2^i} = O(x)$$

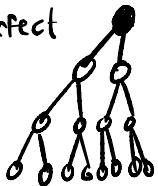
Ant on a Tree



A rooted tree is d -ary if all non-leaves has d children

A rooted tree is d -perfect if it is d -ary and all leaves at same depth

E.g. 2-perfect



level	# nodes	Subtree size
0	1	n
1	2	$\leq n/2$
2	$2 \cdot 2$	$\leq n/4$
3	$2 \cdot 2^2$	$\leq n/8$

Doubling: If $y \geq 1$ initially, y only increases over time and $y \leq B$ always then # times $y \leftarrow y \cdot d$ is $\leq \log_d B$

Halving: If $y \leq B$ initially, y only decreases over time and $y \geq 1$ always then # times $y \leftarrow \frac{y}{d}$ is $\leq \log_d B$

Strategy for d -Perfect Trees

Until cookie

Go to arbitrary child

Doubling Analysis

Let $y := \#$ nodes at ant's level

$y \geq 1$ initially (root)

$y \leq n$ always (n nodes)

After each step $y \leftarrow y \cdot d$

so # steps $\leq \log_d n$

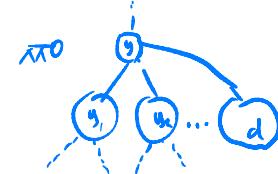
Halving Analysis

Let $y := \#$ nodes in ant's subtree

$y \leq n$ initially

$y \geq 1$ always

After each step $y \leftarrow \frac{y}{d}$ b/c



$y_i :=$ subtree size of i th child

$$y = 1 + \sum_{i=1}^d y_i = 1 + d y_i \geq d y_i \quad \forall i$$

so $y_i \leq y/d \quad \forall i$

so # steps $\leq \log_d n$

I.e. a d -perfect tree has depth $\leq \log_d n$

Common Corollaries

$d:$	2	$\log n$	$\sqrt{\frac{n}{2}}$	\sqrt{n}	$n^\epsilon \quad \forall \epsilon > 0$
depth:	$\log n$	$\frac{\log n}{\log \log n}$	$\sqrt{\log n}$	2	$1/\epsilon$

Averaging: Given $y_1, y_2, \dots, y_d \in \mathbb{R}$, $\exists y_j$ s.t. $y_j \leq \frac{\sum y_i}{d}$

Strategy for d-ary Trees

Until (Cookie)

Go to child j minimizing y_j

Analysis

$$y_j \leq \frac{\sum y_i}{d} \leq \frac{y}{d}$$

so take $\leq \log_d n$ steps by
a halving argument

Corollary: every d-ary tree has a root~leaf path of length $\leq \log_d n$