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& Geometrically "Obvious"Facts and The "Big 3" Inequalities
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Puzzle D : Square maximizes area
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Both provable w/ do-negativity of squares
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Algorithms often about digder-dimensional geometry

Puzzle D : "Cypercube maximizes area"
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Proving Cauchy-Schwarz

By induction or R
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Inductive Step
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Proving AM-GM
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Provi Jesse's Inequality
By induction or 1

Base Case : R =2 - > defe . of convexity
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