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How Theory is (Often) Taught

How Theory is (Often) Taught How to Solve Theory Problems (?)

1. Here is problem X. 1. Write down the problem X.
2. Hereis . 2. Think *real* hard.

3. Therefore solution 3. Write down the solution.




How Theory is Done

How Theory Problems are Solved

. Isolate a toy model case x of major problem X.
. Solve model case x using
. Try using to solve the full problem X.

Si m p I ifi Cation . This does not succeed but can be extended to model cases x’' and x"’.

. Eventually, it is realized that relies crucially on a being true which
holds for model cases x, x’ and x"’.

. Conjecture that is true for all instances of problem X.

. Discover a family f counterexamples y, y’, y”,... to this conjecture.

. Take the simplest counterexample y in this family, and try to solve problem X for this
special case. Meanwhile, try to see whether can work without

. Discover several counterexamples in which fails, in which the cause of failure
can be definitely traced back to . Abandon efforts to modify

10. Realize that counterexample y is related to a problem Z in another field.

is rapidly developed and extended to get the solution to problem X.




How to Learn Theory




How to Learn Theory

Simplification

technical details

(< h, s)-length ¢-expander decomposition for A in G with cut and length slack respectively
genera

| o

ignore lower order parameters / technical details

and work and depth respectively

fix parameters

apply theorem to special cases

Simplify theorems
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How to Learn Theory

Simplification

plausible details

Plausible Markov Bound
note tricks

Overview

Key Setup
Standard Definitions dO pI’OOf on Key Setup

SPGCIa/ cases Cute Telescoping Probability

Cute Telescoping Probability

Proof on Arbitrary Graphs Proof on Regular Graphs

Simplify proofs
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How to Learn Theory

Active Engagement

Proof of Lemma 15.3.5: We're trying to analyze Pr[S;, = 1|Xj,, = 1] for every w € V. To do
this, let’s order V' by distance to {u,v}, so
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Now let’s fix some w;, and suppose that w; cuts {u,v} at level i, i.e., |B(wj,ri-1) N {u,v}| = 1. W .
Then by the definition of our ordering, every wy with k& < j must have |B(wg,ri—1) N {u,v}| > 0. PTO\n @ ot
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Thus Pr[. iw; = 1\‘\',“,/ = 1} < 1/j. So by setting by, = 1/, we have proved the first part of the
lemma.
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The proof of the second part of the lemma is now straightforward:
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Proof of Lemma 15.3.6: Now we're trying to prove that ZlogA 2H3Pr[ Xy, = 1] < 16d(u,v)

i=0 to (UJV) tho w

Cloger

for all w € V. Without loss of generality, let’s assume that d(w,u) < d(w,v). In order for w to cut R

u,v at level i (ie., for X;,, = 1), it needs to be the case that r;_; € [d(w,u),d(w,v)). Moreover, Ths #  wis te 5th Clogest \erfex and  we (6stdes Phjetfbj T oo the closest ety
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= 32|[2¢72, 21 N [d(w, u), d(w, v))|

Thus

log A log A

Z 2Py (X, = 1) < Z 32|22, 271 N [d(w, u), d(w, v)]|

i=0 1=0
= 32|[d(w, u), d(w,v)]| = 32(d(w,v) — d(w, u)) < 32d(u,v),

where the final inequality is from the triangle inequality.

Recreate Proofs after you learn them; see where you get stuck




While G has an (4, s5)-length ¢-sparse cut C:

How to Learn Theory e ——

Apply a length-constrained cut that is

Active Engagement "

Problem 1: Union of Sparse LC Not Clearly Sparse

Definition: (4, s)-length cut C is ¢-sparse if there is an
h-length unit demand D of size | C|/¢ that it hs-separates

Assumptions

Standard
Technique

barrier

Union of Sparse LC Cuts is Sparse

Goal: transform witness demands into a separated unit demand

Insight: demand graph is an s-parallel greedy graph

Theorem[HHT]: s-parallel greedy graphs have arboricity at most O (n”s)

" .

o\
gginal (Non-Unit) Demand| ¢ |Dispersed (Unit) Demand|

Conclusion

Invent Stories that you like / will remember




How to Learn Theory

Active Engagement

Theorem: Every planar graph is 4-colorable

N
,/)|§\>

—

why assumptions needed? what does this give on e.q.s?

Ask Yourself Questions
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How to Learn Theory

Active Engagement How does this
help me solve
ola my problem?
bl2 |2 OQ
pla O
pla b\a

Anchor Your Learning with a problem you like
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How to Learn Theory

Active Engagement Maybe just a

Chernoff bound?

pl2 O

\a
bl2 \\a OQ

Guess what's coming next
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How to Learn Theory

Active Engagement

Ask Questions if you're confused
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How to Learn Theory

Active Engagement

Ask Questions if you're confused
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How to Learn Theory

Active Engagement

0© *

*

8

Ask Questions if you're confused
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How to Learn Theory

Active Engagement

Ask Questions if you're confused
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How to Learn Theory

Active Engagement
Just a 27?7
Chernoff bound

Ask Questions if you're confused
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How to Learn Theory
What to Aim For

Roadmaps of proof

Tools and stories you'll remember

Intuition of how to think about complexity

(up to constants)
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How to Do Theory



How to Do Theory

Doing Theory is Hard

Can Succeed with a Wide Range of Aptitudes:
e Mathematical quickness
e Good memory

o Goodpmtnaias
e Reliad Work to Your Strengths

e Just really curious =
o Stick-To-Itiveness &2
e Impatient / only interested in elegant solutions )



How to Do Theory

You Will Get Stuck

Theorem: Every planar graph is 4—co\orab\e/2~;

Theorem: Every tree is 4-colorable (&2

Simplify your problem
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How to Do Theory

You Will Get Stuck

Collaborate

21



How to Do Theory

You Will Get Stuck

STOC 2021

e “A (Slightly) Improved Approximation Algorithm for Metric TSP”, by Anna R. Karlin (University of Washington), Nathan Klein (University of Washington), and Shayan Oveis
Gharan (University of Washington).

e “The Complexity of Gradient Descent: CLS = PPAD n PLS”, by John Fearnley (University of Liverpool), Paul W. Goldberg (University of Oxford), Alexandros Hollender
(University of Oxford), and Rahul Savani (University of Liverpool).

¢ “Indistinguishability Obfuscation from Well-Founded Assumptions”, by Aayush Jain (University of California at Los Angeles), Huijia Lin (University of Washington), and Amit
Sahai (University of California at Los Angeles).

STOC 2020

® “Improved Bounds for The Sunflower Lemma”, by Ryan Alweiss, Shachar Lovett, Kewen Wu, and Jiapeng Zhang.

STOC 2019

® “Log-Concave Polynomials II: High-Dimensional Walks and an FPRAS for Counting Basis of a Matroid”, by Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant.

e “The Reachability Problem for Petri Nets Is Not Elementary”, by Wojciech Czerwinski, Stawomir Lasota, Ranko Lazié, Jéréme Leroux, and Filip Mazowiecki.
® “Oracle Separation of BPQ and PH”, by Ran Raz and Avishay Tal.

Collaborations

STOC 2018
e “A Constant-Factor Approximation Algorithm for the Asymmetric Traveling Salesman Problem”, by Ola Svensson, Jakub Tarnawski, and Léiszalé A. Végh.

STOC 2017

e “Explicit, Almost Optimal, Epsilon-Balanced Codes”, by Amnon Ta-Shma.
e “Deciding Parity Games in Quasipolynomial Time”, by Cristian Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan.
e “A Weighted Linear Matroid Parity Algorithm”, by Satoru Iwata and Yusuke Kobayashi.

STOC 2016

lg" © “Reed-Muller Codes Achieve Capacity on Erasure Channels”, by Shrinivas Kudekar, Santhosh Kumar, Marco Mondelli, Henry D. Pfister, Eren Sasoglu, and Rudiger Urbanke.
e “Explicit Two-Source Extractors and Resilient Functions”, by Eshan Chattopadhyay and David Zuckerman.
® “Graph Isomorphism in Quasipolynomial Time”, by Laszlé Babai.

STOC 2015

e “Exponential Separation of Information and Communication for Boolean Functions”, by Anat Ganor, Gillat Kol, and Ran Raz.
® “Lower Bounds on the Size of Semidefinite Programming Relaxations”, by James Lee, Prasad Raghavendra, and David Steurer.
e “2-Server PIR with Sub-Polynomial Communication”, by Zeev Dvir and Sivakanth Gopi.

STOC Best Papers

ollaborate

22



How to Do Theory

You Will Get Stuck

Read Related Work

23



How to Do Theory

You Will Get Stuck

‘:l I

' :U, :
Cut Yourself Slack
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How to Do Theory

A Few Mantras

\
\
\ |
\ \
\ \ 3
| \ \
\ \ 3
. \ \
.'. \ \
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\

Didn’t result
INn a paper

My Time in Grad School

Failure is Common
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How to Do Theory

A Few Mantras But resulted in
knowledge

which resulted in

another problem

Didn’t result

= baber which resulted in
|
Papb \_/ a collaboration
several years later
My Time in Grad School which resulted in
a paper

Learning is Progress
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H OW to D O Th eo ry How Theory Problems are Solved

A Few Mantras

. Isolate a toy model case x of major problem X.

. Solve model case x using

. Try using to solve the full problem X.

. This does not succeed but can be extended to model cases x’ and x"’.

. Eventually, it is realized that relies crucially on a being true which

holds for model cases x, x' and x"’.

. Conjecture that is true for all instances of problem X.

. Discover a family f counterexamples y, y’, y”,... to this conjecture.

. Take the simplest counterexample y in this family, and try to solve problem X for this

special case. Meanwhile, try to see whether can work without

. Discover several counterexamples in which fails, in which the cause of failure

can be definitely traced back to . Abandon efforts to modify

10. Realize that counterexample y is related to a problem Z in another field.

is rapidly developed and extended to get the solution to problem X.

Any New Insight is Progress

27




How to Do Theory

A Few Mantras

Grades

Awards Internships

Undergrad

Theorems
You
Prove

g ©

lnfrequent

Paper
You How Cool

Werite T heory Is

ﬁ)

Grad Student

Learn to Love the Process Not the Outcome

28



How to Write Theory



Writing Dos and Don’ts -

Bad References L=

Z. N
=
Theorem 1: 1+1+1=3 Theorem 1: 1+1+1=3

Proof:
| i Proof:
First we show 1+1=2... By Lemma 1+1=2

Next, we show 2+1=3...

Next, we show 2+1=3...

Theorem 2: 2+1+1=4

Proof:

Theorem 2: 2+1+1=4

Proof:
By Lemma 1+1=2
Next, we show 2+2=4...

First we show 1+1=2...
Next, we show 2+2=4...

Abstract out reused arguments into lemmas
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Writing Dos and Don’ts -

Bad References L=

Z. N
=
Theorem 1: 1+1+1=3 Theorem 1: 1+1+1=3

Proof:
| ) Proof:
First we show 1+1=2... By Lemma 1+1=2...

Next, we show 2+1=3...

Next, we show 2+1=3...

Theorem 2: 2+1+1=4

Proof:

Theorem 2: 2+1+1=4

Proof:
By Lemma 1+1=2...
Next, we show 2+2=4...

By the argument in Theorem 1, 1+1=2
Next, we show 2+2=4...

Don't reference the insides of other proofs
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Writing Dos and Don’ts

Bad References

Hershkowitz et al. showed that 1+1=2... Theorem 1: 1+1+1=3
Next, we show 2+1=3...

Proof:
By Lemma 1+1=2...
Next, we show 2+1=3...

Don't reference facts not stated as theorems/lemmas/etc.

32



Writing Dos and Don’ts

Intuition

Formal Proof

Give intuition / an overview at the beginning of your proofs

33



Writing Dos and Don’ts

Intuition

lam o\ o 0 | fam o\
"o \— "%
, , Excruciating
Hand Waving Just Right .
Formality

Balance intuition and formality

34



Writing Dos and Don’ts

General Style

and s0 ) g, > . |supp(Asix U Bgik)| < pp(Agf)) < (~)(n1+0(6) + NO(L2) Thus,
plugging this bound on ) Sik |supp(Agik U Bsix)| into the guarantees of Theorem 10.4 and the
fact that our pairs are L - N9(¢)-batchable, we have that each time we compute a cutmatch in step
2, the total number of edges we add across all Gs for S € N[W] for a fixed A’ is at most O(m + L -
NO© 0 L NOE L) = O(m+n!+0) 4 L2. NO©)). Since we have 1/¢ iterations, it follows that
the number of edges across all G for S € N'[h'] is never more than % .O(m+n!t0) 4 2. NO©),
It follows that the work and depth to compute all cut strategies for all S € N'[h'] for all 1/e-many
iterations and all A’ < h- % . (s)() (1/€) g power of 2 in step 2 are respectively % i Weut-strat (Ai, m;)
and %-maxi Decut-strat (Ai, m;) where |A;| < |A|/L for all i and ), m; < ()(m-i— nlt0e) 4 2. NO(‘)).

> lsupp(Asik U Bsix) < > N WHAY) < O(n'+0© 4 NOO 2

Si k S,
Thus, plugging this bound on } 4 ; [supp(Asi kU Bg; k)| into the guarantees of Theorem 10.4 and

the fact that our pairs are L - N¢ (‘)-batchablc, we have that each time we compute a cutmatch in
step 2, the total number of edges we add across all Gg for S € N[h'] for a fixed h’ is at most

(}(m + L - l\r()(t) + n1+()(e) + lNr()(t)L) — ()(TTL + n1+()(c) + L2 . ]V()(e))'

Since we have 1/e iterations, it follows that the number of edges across all Gg for S € N[Rh/] is
never more than

1 O(m + n+0@ 4 [2. NO©).

¢
It follows that the work and depth to compute all cut strategies for all S € N'[R/] for all 1/e-many
iterations and all A’ < h - % - (s)© (1/€) a power of 2 in step 2 are respectively

1
- Z Weut-strat (AL~ mi) (l())

€

1
: I’ﬂ?,X Deut-strat (Ai: m‘i) (20)

Use whitespace (align*s) generously
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Writing Dos and Don’ts

General Style

1. Vertices: Let V¢ := {w,, w, },.¢ be a set of vertices, two for each edge of E. The vertex set of
our k-ECSM instance is W := V U VE.

2. Edges: For each edge e = {u,v} € E, we have 4 edges in our k-ECSM instance, namely
{u,we}, {we,v}, {u,w,}, and {w,, v}. Let Egaqget be all such edges. The edge set of our
k-ECSM instance is B := Egagget U L.

3. Costs: The cost of each edge b € B in our k-ECSM instance is 1, i.e., ¢, = 1.

lot of) figures

36

. Vertices: Let Vg := {w,, w,},.p be a S¢ o for each edge of E. The vertex set of

our k-ECSM instance is W := V U VE.

. Edges: For each edge ¢ = {u,v} € E, we have 4 edges in our k-ECSM instance, namely

{u,we}, {we,v}, {u,w,}, and {w,, v}. Let Egagger be all such edges. The edge set of our
k-ECSM instance is B := Egagget U L.

. Costs: The cost of each edge b € B in our k-ECSM instance is 1, i.e., ¢, = 1.




Writing Dos and Don’ts

LaTeX Nits (many courtesy of Ryan O’'Donnell)

[ D\ ° o
(& =
Quoth the Raven “Nevermore”. Quoth the Raven ~“Nevermore™.

Quoth the Raven ” Nevermore”. Quoth the Raven “Nevermore”.
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Writing Dos and Don’ts

LaTeX Nits (many courtesy of Ryan O’'Donnell)

- ° o
&/ &
Inner product $<x,y>9$. Inner product $\langle x,y \rangle$.

Inner product < z,y >. Inner product (x,y).
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Writing Dos and Don’ts

LaTeX Nits (many courtesy of Ryan O’'Donnell)

lm o\ ° o
&)/ —
$(\frac{x 2Ky} \leq z$ S\left(\frac{x*2H{yN\right) \leq z$

2

(g)ﬁz (%)Sz



Writing Dos and Don’ts

LaTeX Nits (many courtesy of Ryan O’'Donnell)

PR o o
&/ | —
$ALG(x) = log n$, $\textsc{ALG}(x) = \log n$

ALG(x) = logn ALG(z) = logn



Writing Dos and Don’ts

LaTeX Nits (many courtesy of Ryan O’'Donnell)

- ° o
e/ A
Let G be a k-connected graph. Let $G$ be a $k$-connected graph.

Let G be a k-connected graph. Let G be a k-connected graph.
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Writing Dos and Don’ts

LaTeX Nits (many courtesy of Ryan O’'Donnell)

\begin{align\label{eqg} \begin{align\label{eqg}
A & \leg B \\ A & \leg B \nonumber \\
& \leqg D & \leqg D
\end{align} \end{align}
so $A\leqg C$ by \ref{eq]. so $A\leq C$ by \ref{eq].
A<B (1) A<B
<C (2) <C

so A < C by Equation 1. so A < C by Equation 1.
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Writing Dos and Don’ts

LaTeX Nits (many courtesy of Ryan O’'Donnell)

\begin{proof}
\begin{align]}
A & \leg B \\
& \leg D
\end{align}
\end{proof}

Proof.

- o\
=

43

\begin{proot} We have
\begin{align}
A & \leg B \\

& \leq D \qedhere
\end{align}

\end{proof}

Proof. We have

~



Writing Dos and Don’ts

LaTeX Nits (many courtesy of Ryan O’'Donnell)

- X
o &
Math is fun, e.qg. algebra. Math is fun, e.g.\ algebra.

Math is fun, e.g. algebra. Math is fun, e.g. algebra.
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Writing Dos and Don’ts

LaTeX Nits (many courtesy of Ryan O’'Donnell)

Math is fun, e.qg. algebra.

Math is fun, e.g.\ algebra.

Math is fun, e.g. algebra.
Math is fun, e.g. algebra.

&
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Summary

Simplification
g €70
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Why Do Theory




Why Do Theory

Infinite learning opportunities of beautiful facts
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Why Do Theory

't's a young field (less to get up to speed with

~2000 Years Ago ~100 Years Ago
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Why Do Theory

Uniquely at the intersection of the creative and the formal

s
M

Q)
D)
ol
»
O
3
D
:".
3
D
&3
f_l-
DN
D
v
q
Q)
A
=7
A
-~
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Why Do Theory

Theory

_|_
" “Music is the only magic left in this world.”

-Bob Dylan *
4 -My dad

1. guided by arcane laws

2. results often defy common sense

3. takes intense study to master
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