

# **On How to Learn, Do and Write Theory**

**Spring 2026  
Brown University**

**D Ellis Hershkowitz**

# How Theory is (Often) Taught

## How Theory is (Often) Taught

1. Here is **problem X**.
2. Here is **method A**.
3. Therefore **solution**

## How to Solve Theory Problems (?)

1. Write down the **problem X**.
2. Think \*real\* hard.
3. Write down the **solution**.

≈Murray Gell-Mann



# How Theory is Done

## Simplification



## Active



### How Theory Problems are Solved

1. Isolate a toy **model case x** of major **problem X**.
2. Solve **model case x** using **method A**.
3. Try using **method A** to solve the full **problem X**.
4. This does not succeed but **method A** can be extended to **model cases x' and x''**.
5. Eventually, it is realized that **method A** relies crucially on a **property P** being true which holds for **model cases x, x' and x''**.
6. Conjecture that **property P** is true for all instances of **problem X**.
7. Discover a family of **counterexamples y, y', y'',...** to this conjecture.
8. Take the simplest **counterexample y** in this family, and try to solve **problem X** for this special case. Meanwhile, try to see whether **method A** can work without **property P**.
9. Discover several counterexamples in which **method A** fails, in which the cause of failure can be definitely traced back to **property P**. Abandon efforts to modify **method A**.
10. Realize that **counterexample y** is related to a **problem Z** in another field.

• • •

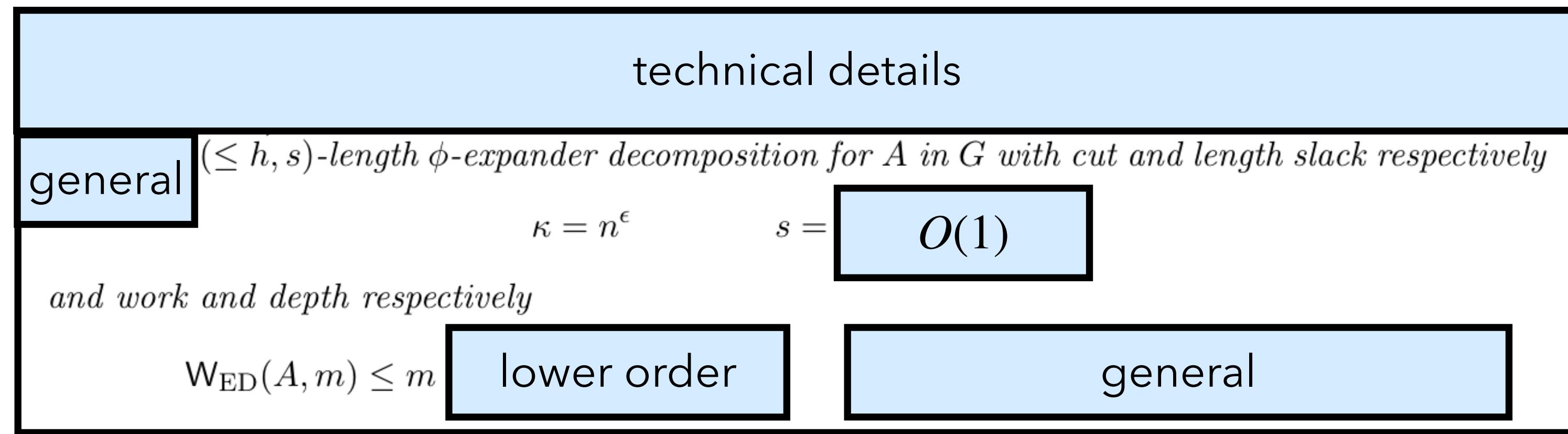
22. **Method Z** is rapidly developed and extended to get the **solution** to **problem X**.

≈Terry Tao

# **How to Learn Theory**

# How to Learn Theory

## Simplification



*ignore lower order parameters / technical details*

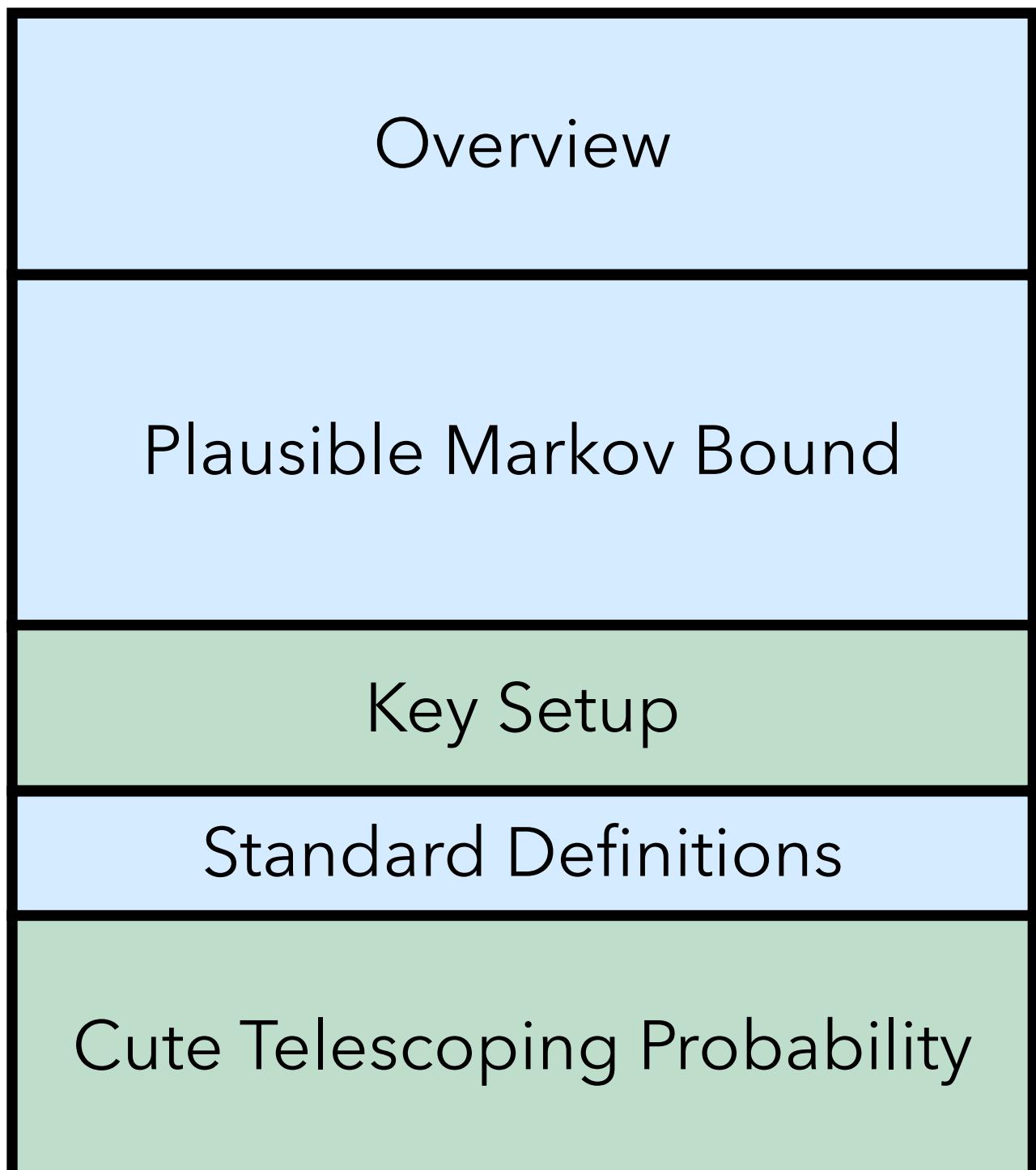
*fix parameters*

*apply theorem to special cases*

**Simplify theorems**

# How to Learn Theory

## Simplification

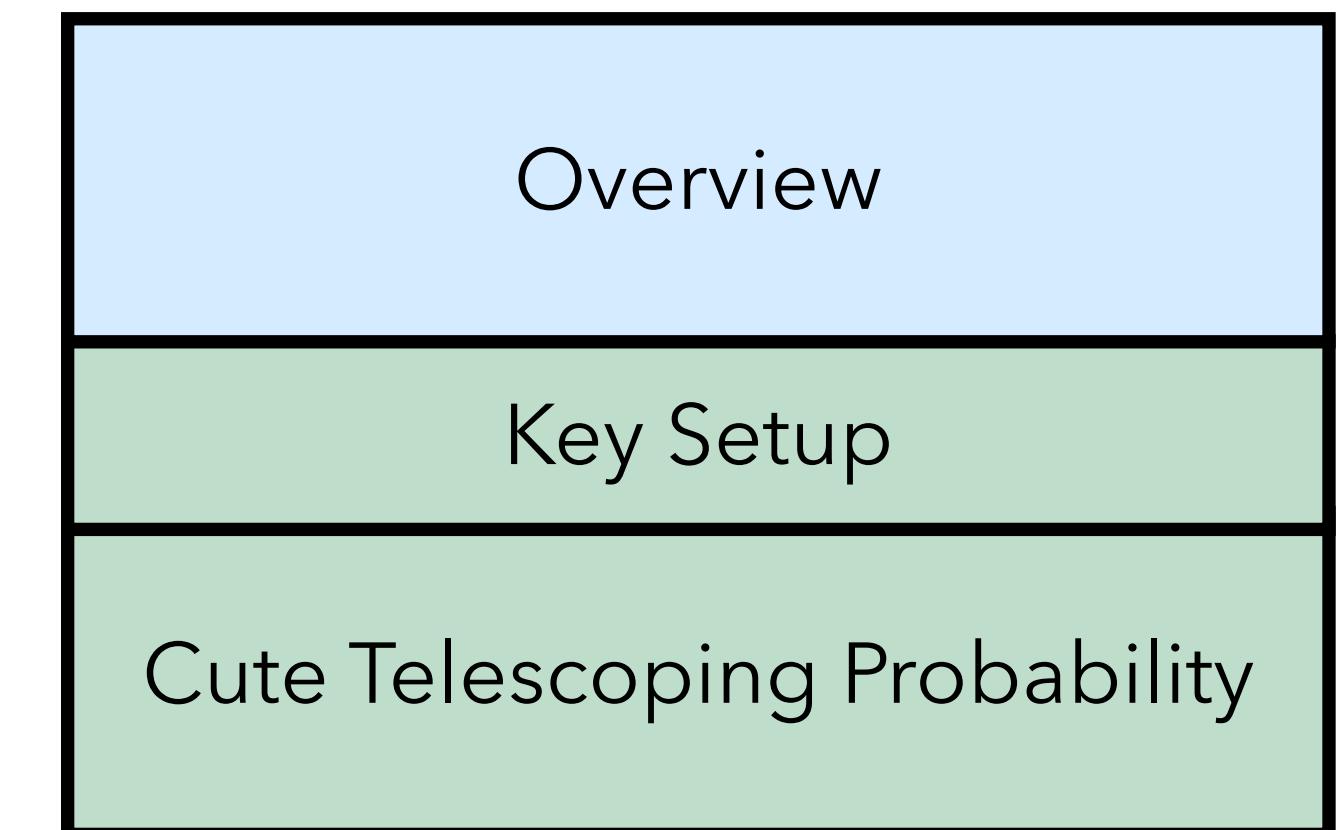


*Proof on Arbitrary Graphs*

*skip standard +  
plausible details*

*note tricks*

*do proof on  
special cases*



*Proof on Regular Graphs*

**Simplify** proofs

# How to Learn Theory

## Active Engagement

**Proof of Lemma 15.3.5:** We're trying to analyze  $\Pr[S_{iw} = 1 | X_{iw} = 1]$  for every  $w \in V$ . To do this, let's order  $V$  by distance to  $\{u, v\}$ , so

$$d(w_i, \{u, v\}) \leq d(w_{i+1}, \{u, v\})$$

for all  $i$ .

Now let's fix some  $w_j$ , and suppose that  $w_j$  cuts  $\{u, v\}$  at level  $i$ , i.e.,  $|B(w_j, r_{i-1}) \cap \{u, v\}| = 1$ . Then by the definition of our ordering, every  $w_k$  with  $k < j$  must have  $|B(w_k, r_{i-1}) \cap \{u, v\}| > 0$ . Thus if *any* of these nodes come before  $w_j$  in  $\pi$ , we know that  $w_j$  will not settle  $u, v$  at level  $i$ , since at least one of  $u, v$  will have already been clustered by the time  $w_j$  gets to form clusters. Since  $\pi$  is a random permutation, the probability that  $w_j$  comes before the  $w_k$  for all  $k < j$  is exactly  $1/j$ . Thus  $\Pr[S_{iwj} = 1 | X_{iwj} = 1] \leq 1/j$ . So by setting  $b_{wj} = 1/j$ , we have proved the first part of the lemma.

5

The proof of the second part of the lemma is now straightforward:

$$\sum_{w \in V} b_w = \sum_{j=1}^n b_{wj} = \sum_{j=1}^n \frac{1}{j} = H_n = O(\log n),$$

as claimed. ■

**Proof of Lemma 15.3.6:** Now we're trying to prove that  $\sum_{i=0}^{\log \Delta} 2^{i+3} \Pr[X_{iw} = 1] \leq 16d(u, v)$  for all  $w \in V$ . Without loss of generality, let's assume that  $d(w, u) \leq d(w, v)$ . In order for  $w$  to cut  $u, v$  at level  $i$  (i.e., for  $X_{iw} = 1$ ), it needs to be the case that  $r_{i-1} \in [d(w, u), d(w, v))$ . Moreover,  $r_{i-1}$  is distributed uniformly in  $[2^{i-2}, 2^{i-1}]$ . Thus

$$\Pr[X_{iw} = 1] = \frac{|[2^{i-2}, 2^{i-1}] \cap [d(w, u), d(w, v)]|}{|[2^{i-2}, 2^{i-1}]|} = \frac{|[2^{i-2}, 2^{i-1}] \cap [d(w, u), d(w, v)]|}{2^{i-2}}.$$

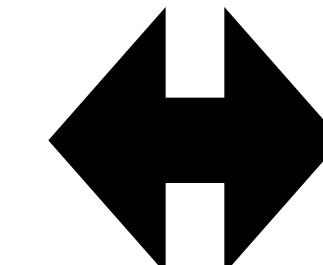
So we have that

$$2^{i+3} \Pr[X_{iw} = 1] = \frac{2^{i+3}}{2^{i-2}} |[2^{i-2}, 2^{i-1}] \cap [d(w, u), d(w, v)]| = 32 |[2^{i-2}, 2^{i-1}] \cap [d(w, u), d(w, v)]|.$$

Thus

$$\sum_{i=0}^{\log \Delta} 2^{i+3} \Pr[X_{iw} = 1] \leq \sum_{i=0}^{\log \Delta} 32 |[2^{i-2}, 2^{i-1}] \cap [d(w, u), d(w, v)]| = 32 |[d(w, u), d(w, v)]| = 32(d(w, v) - d(w, u)) \leq 32d(u, v),$$

where the final inequality is from the triangle inequality. ■



**2 Subclaims**

(A)  $\sum_{i=0}^{\log \Delta} 2^{i+3} \Pr[X_{iw} = 1] \leq 16d_{uv}$

(B)  $\exists$  bound for s.t.  $\Pr[S_{iw} | X_{iw}] \leq b_w$  and  $\sum_w b_w \leq O(\log n)$

**Proving (A)**

WLOG suppose  $d_{uw} \leq d_{vw} \Rightarrow$   
 Notice  $X_{iw}$  is if we  $B(u, r_i)$  but  $v \notin B(u, r_i)$   
 $\Rightarrow \Pr[X_{iw}] = \Pr(d_{uw} \leq r_i < d_{vw})$   
 Since  $r_i$  chosen uniformly in  $[2^{i-1}, 2^i]$  this is as  $\Pr[X_{iw}] = \Pr(d_{uw} \leq 2^{i-1} < d_{vw}) = \Pr(d_{uw} \leq 2^{i-1})$   
 Thus  $\sum_i 2^{i+3} \Pr[X_{iw}] = \sum_i 2^{i+3} \Pr[X_{iw}] \approx \sum_i \frac{\log d_{uv}}{2^i} = \Theta\left(\sum_{i=0}^{\log d_{uv}} 2^i - \frac{\log d_{uv}}{2^{\log d_{uv}}}\right)$   
 $= \Theta(2(d_{uv} - d_{uv}))$   
 $= 16d_{uv}$

**Proving (B)**

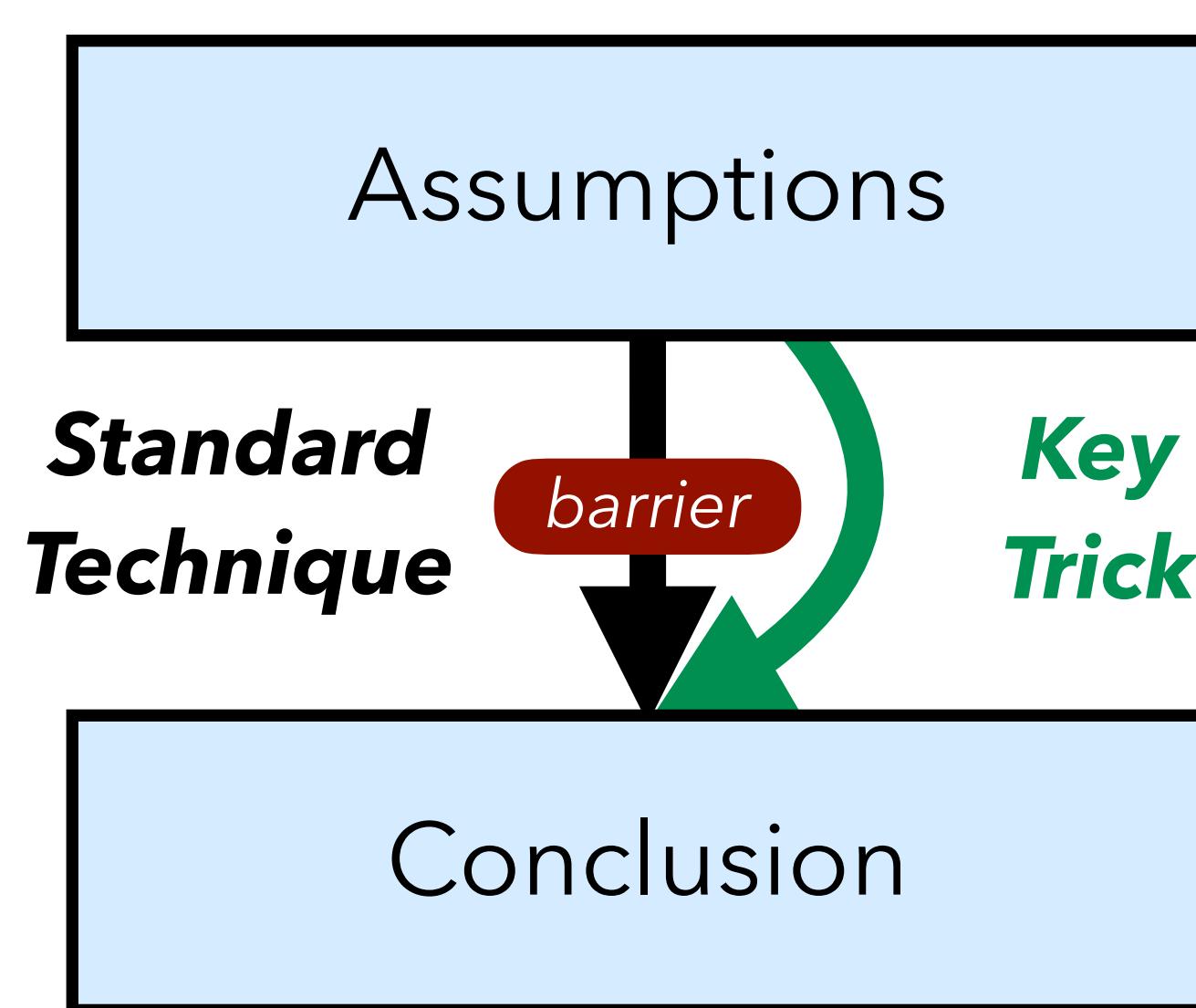
Order  $w$  by closeness to  $(u, v)$  (i.e.  $\min(d_{uw}, d_{vw})$ )

Conditioning on a vertex cutting  $(u, v)$ . A vertex  $w$  settles  $(u, v)$  only if  $\pi(w) < \pi(u) \wedge w$  closer to  $(u, v)$  than  $u$ .  
 Thus if  $w$  is the 5th closest vertex and we consider projecting  $\pi$  onto the 5 closest vertices the  $w$  not always come first  $\Rightarrow$  happens w/ Pr  $\frac{1}{5}$ .  
 So let  $b_w = \frac{1}{j}$  and so  $\Pr[S_{iw} | X_{iw}] \leq \frac{1}{j}$ .  
 Sum of a harmonic gives  $\sum_w b_w \leq O(\log n)$

**Recreate Proofs** after you learn them; see where you get stuck

# How to Learn Theory

## Active Engagement



**Invent Stories** that you like / will remember

**Do the Same for LC Expander Decompositions?**

While  $G$  has an  $(h, s)$ -length  $\phi$ -sparse cut  $C$ :

- $(h, s)$ -length  $\tilde{O}(\phi)$ -sparse
- $\beta$ -balanced

50

**Problem 1: Union of Sparse LC Not Clearly Sparse**

**Definition:**  $(h, s)$ -length cut  $C$  is  $\phi$ -sparse if there is an  $h$ -length unit demand  $D$  of size  $|C|/\phi$  that it  $hs$ -separates

Sum of witnessing demands is not unit!

57

**Union of Sparse LC Cuts is Sparse**

**Goal:** transform witness demands into a separated unit demand

**Insight:** demand graph is an  $s$ -parallel greedy graph

**Theorem[HHT]:**  $s$ -parallel greedy graphs have arboricity at most  $\tilde{O}(n^{1/s})$

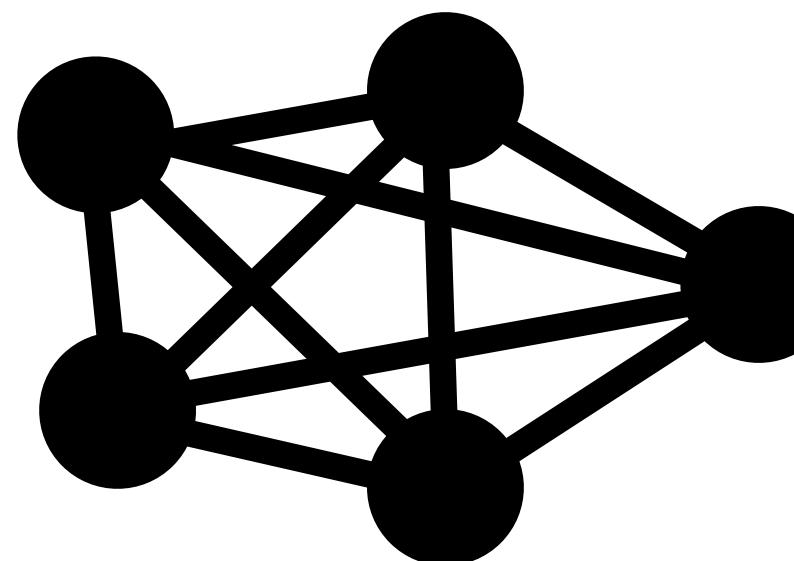
Original (Non-Unit) Demand

Dispersed (Unit) Demand

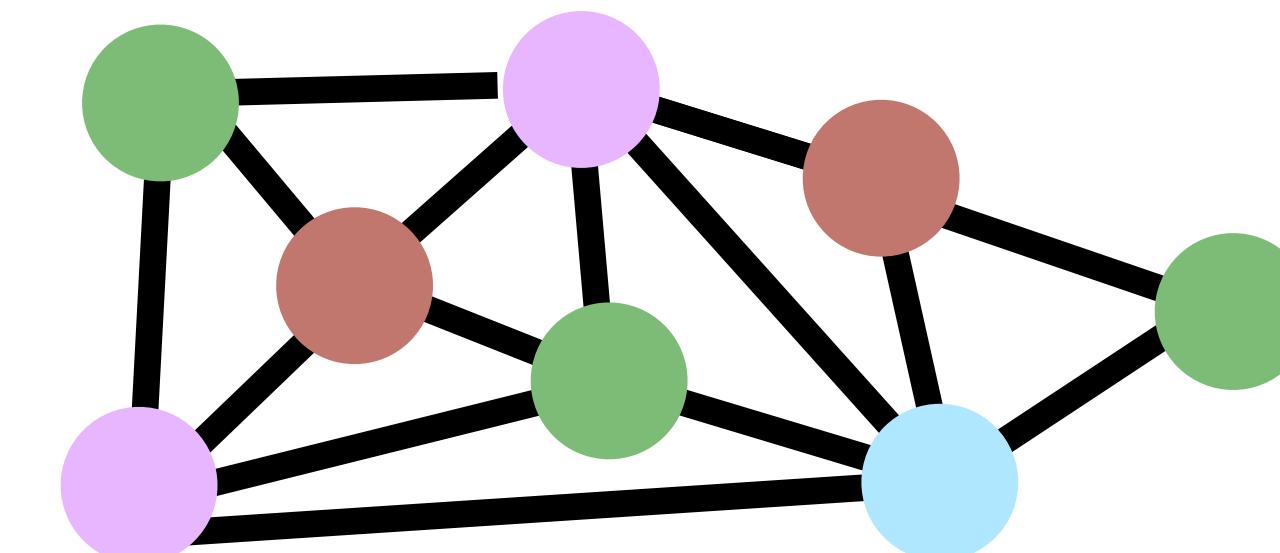
# How to Learn Theory

## Active Engagement

**Theorem:** Every planar graph is 4-colorable

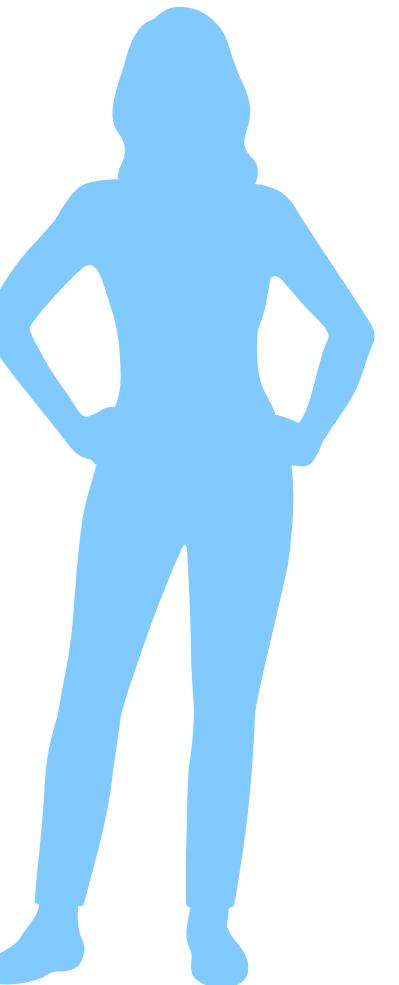


*why assumptions needed?*



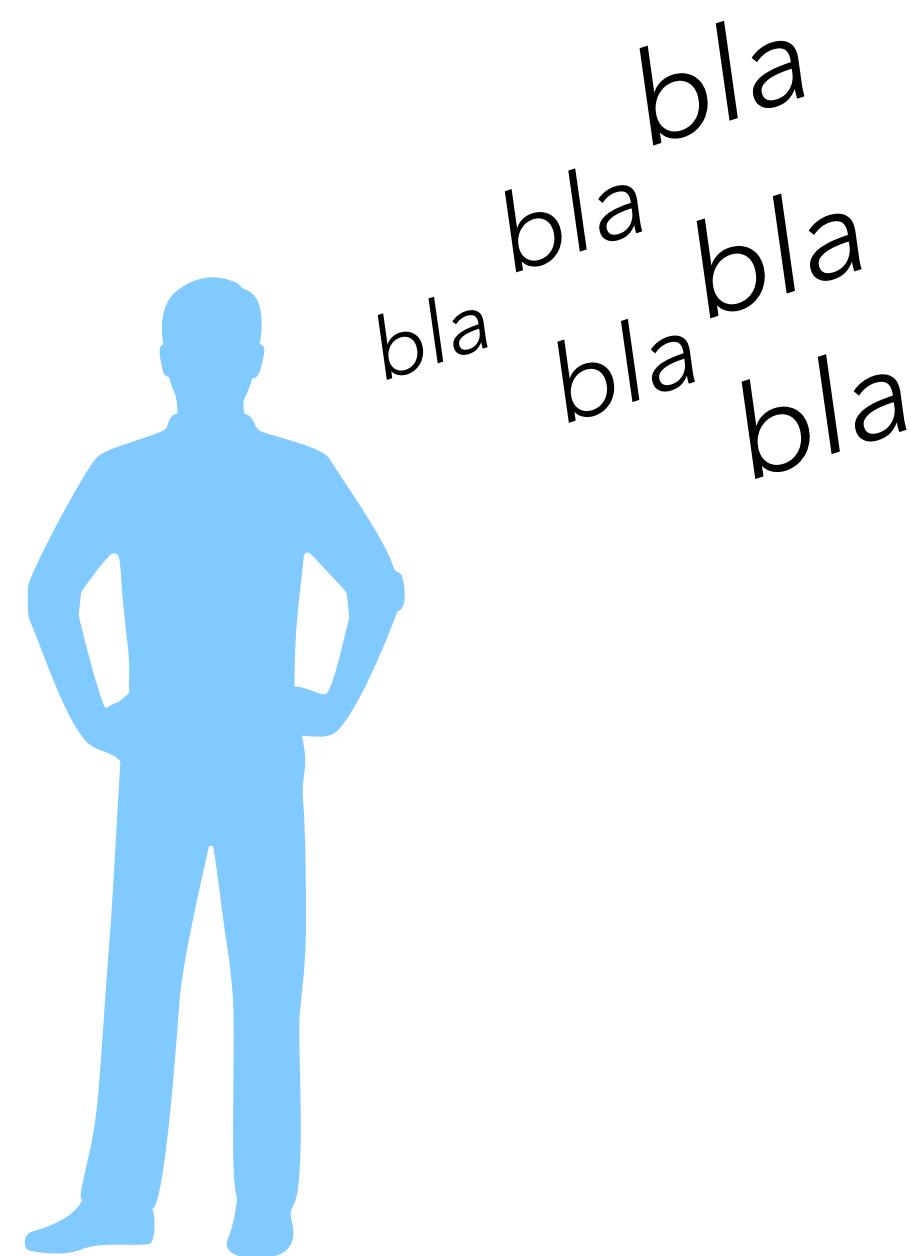
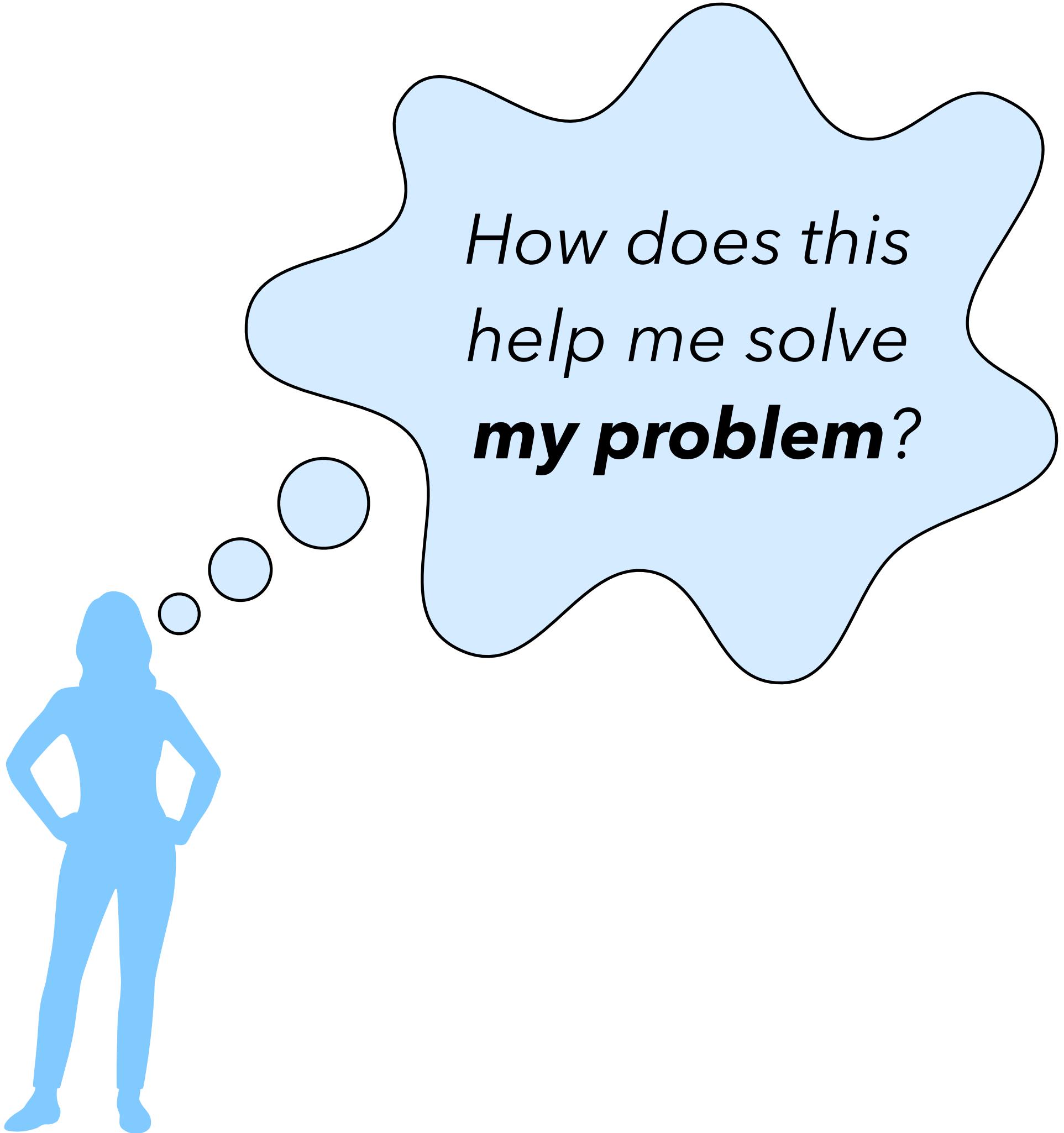
*what does this give on e.g.s?*

**Ask Yourself Questions**



# How to Learn Theory

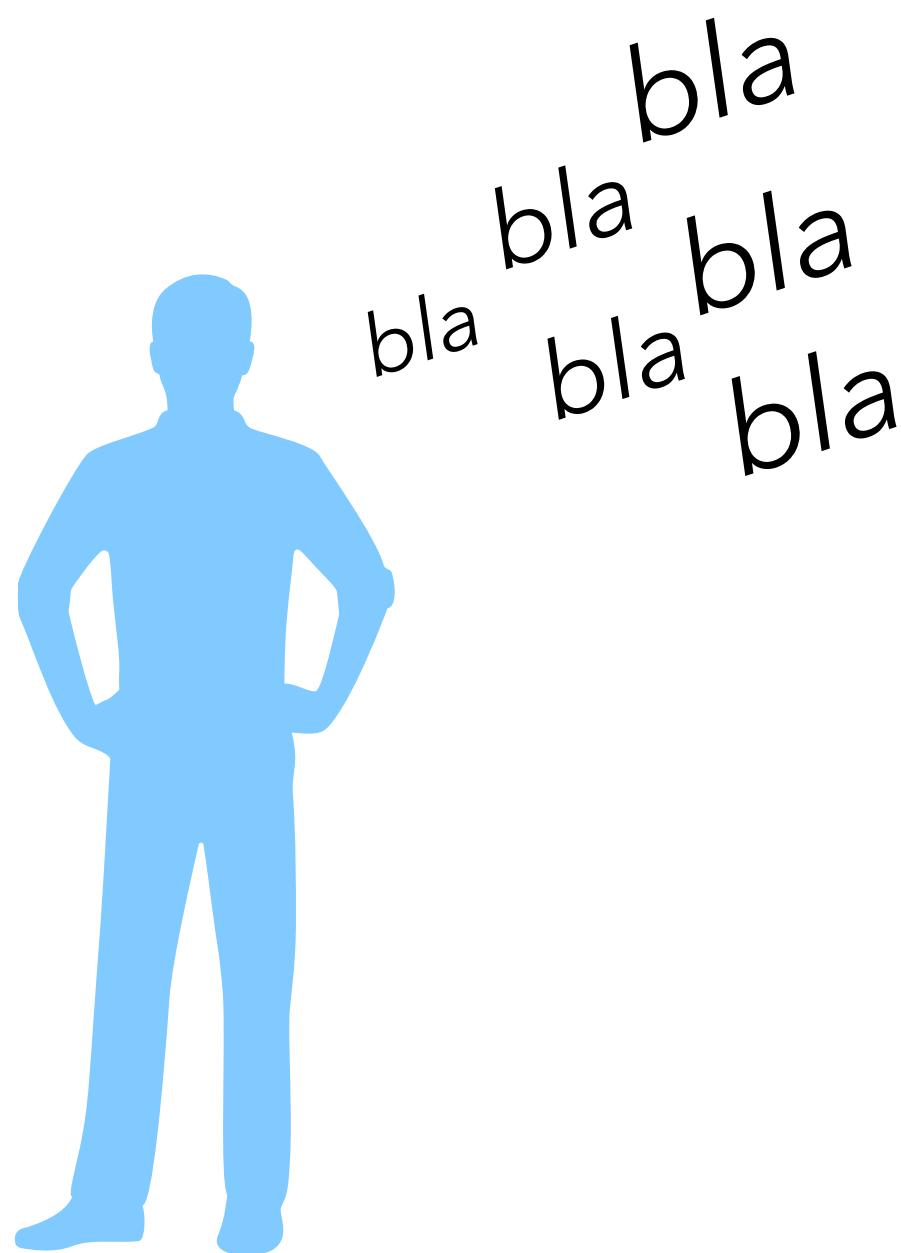
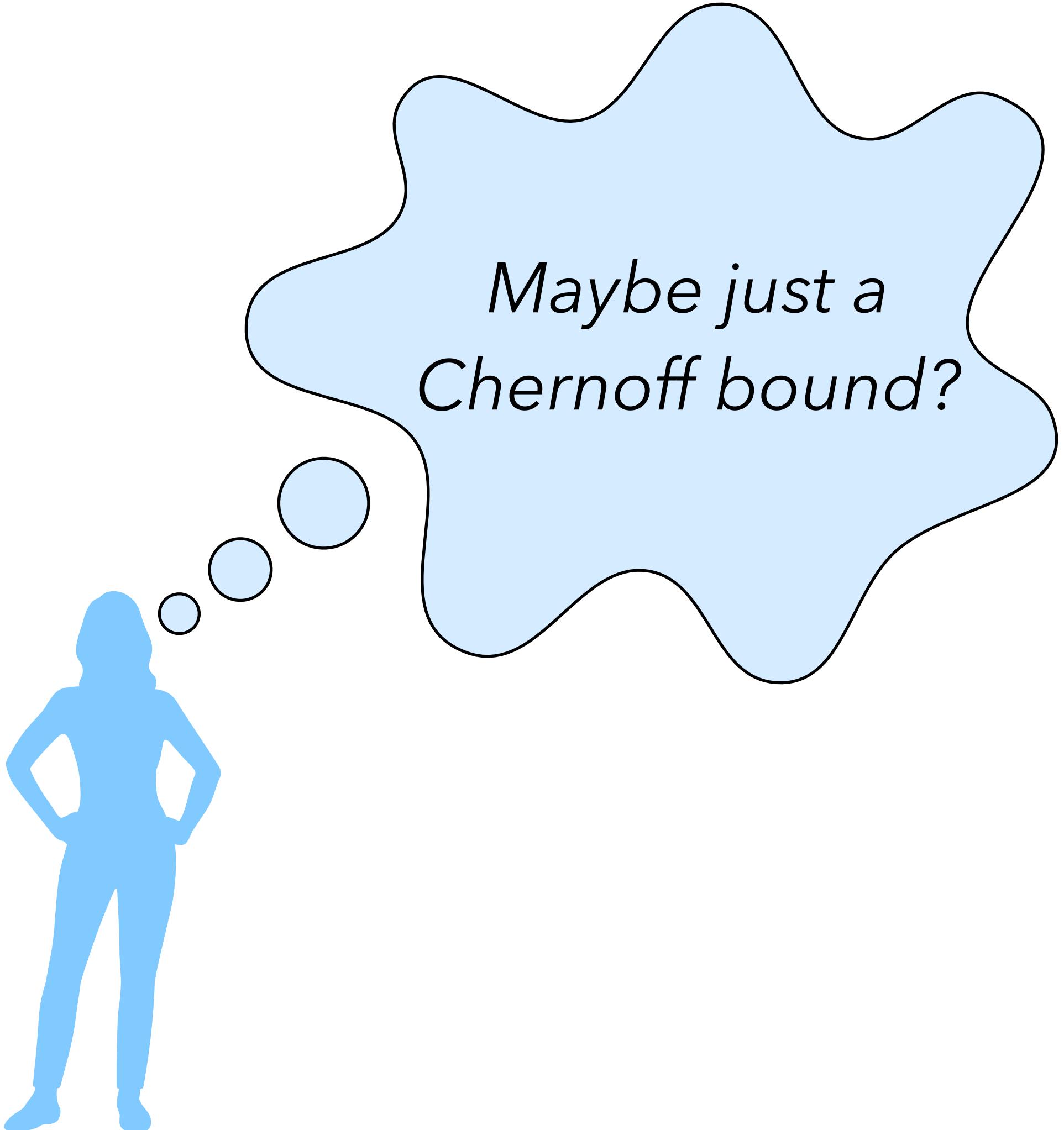
## Active Engagement



**Anchor Your Learning** with a problem you like

# How to Learn Theory

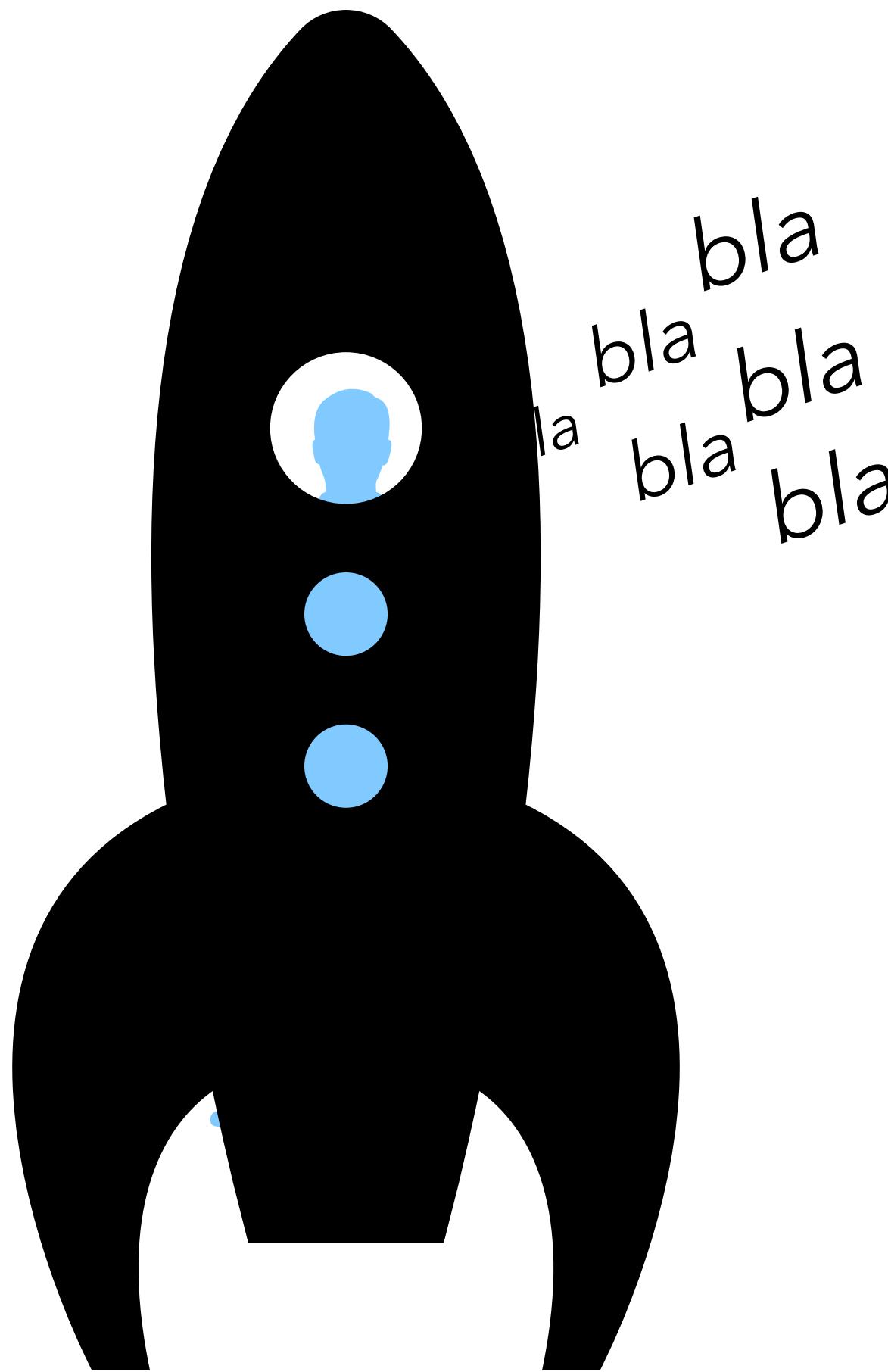
## Active Engagement



**Guess** what's coming next

# How to Learn Theory

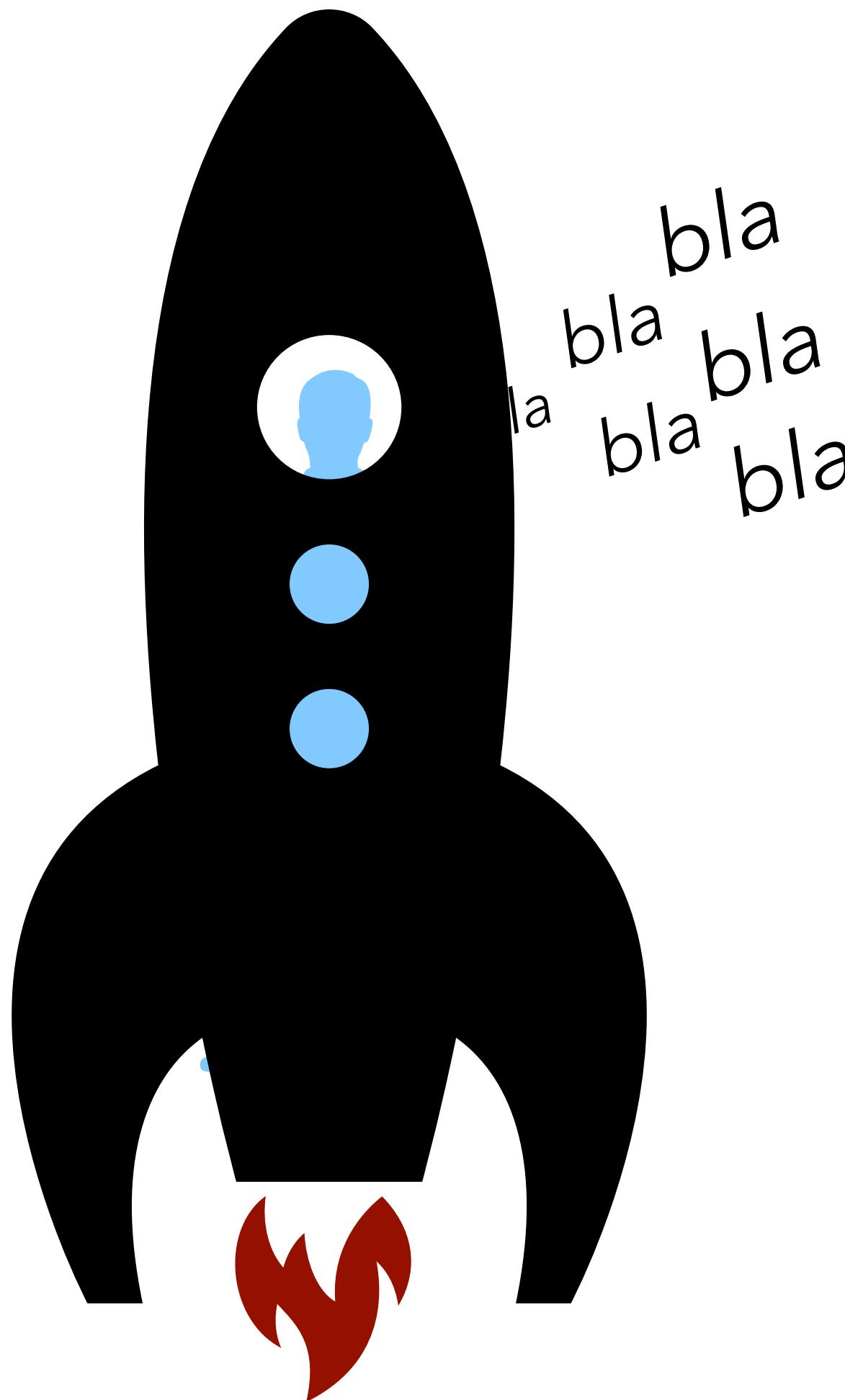
## Active Engagement



**Ask Questions** if you're confused

# How to Learn Theory

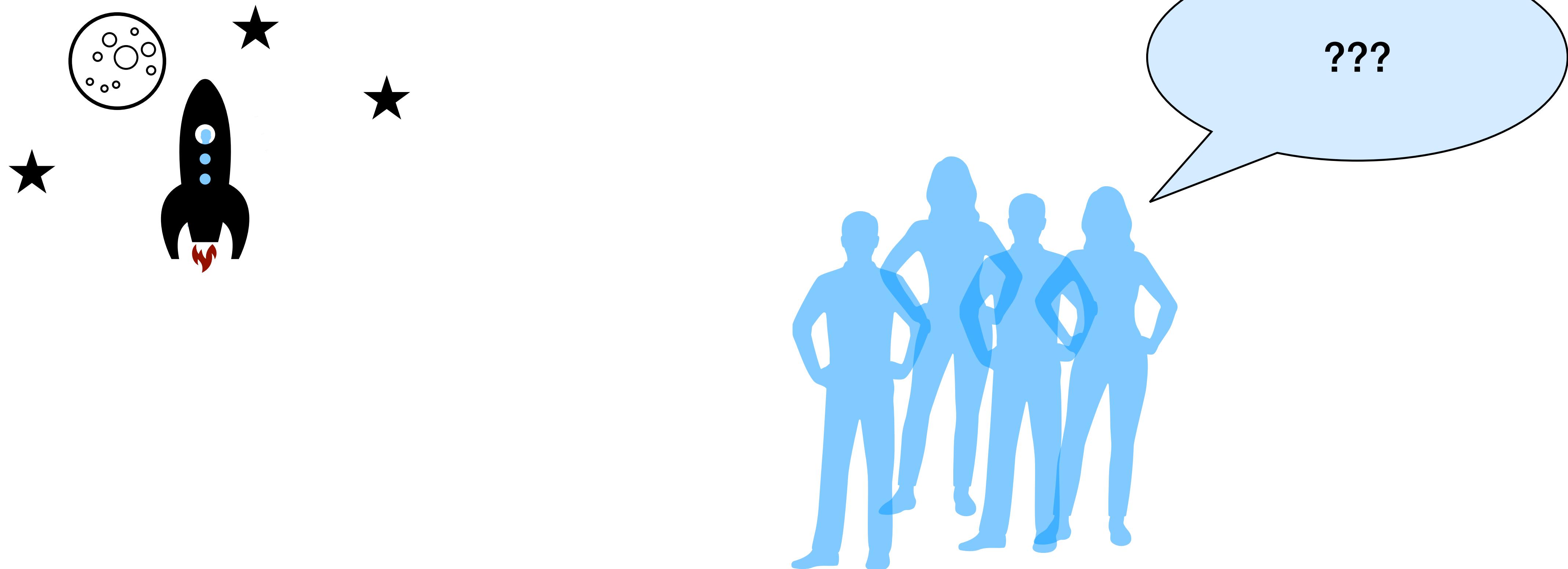
## Active Engagement



**Ask Questions** if you're confused

# How to Learn Theory

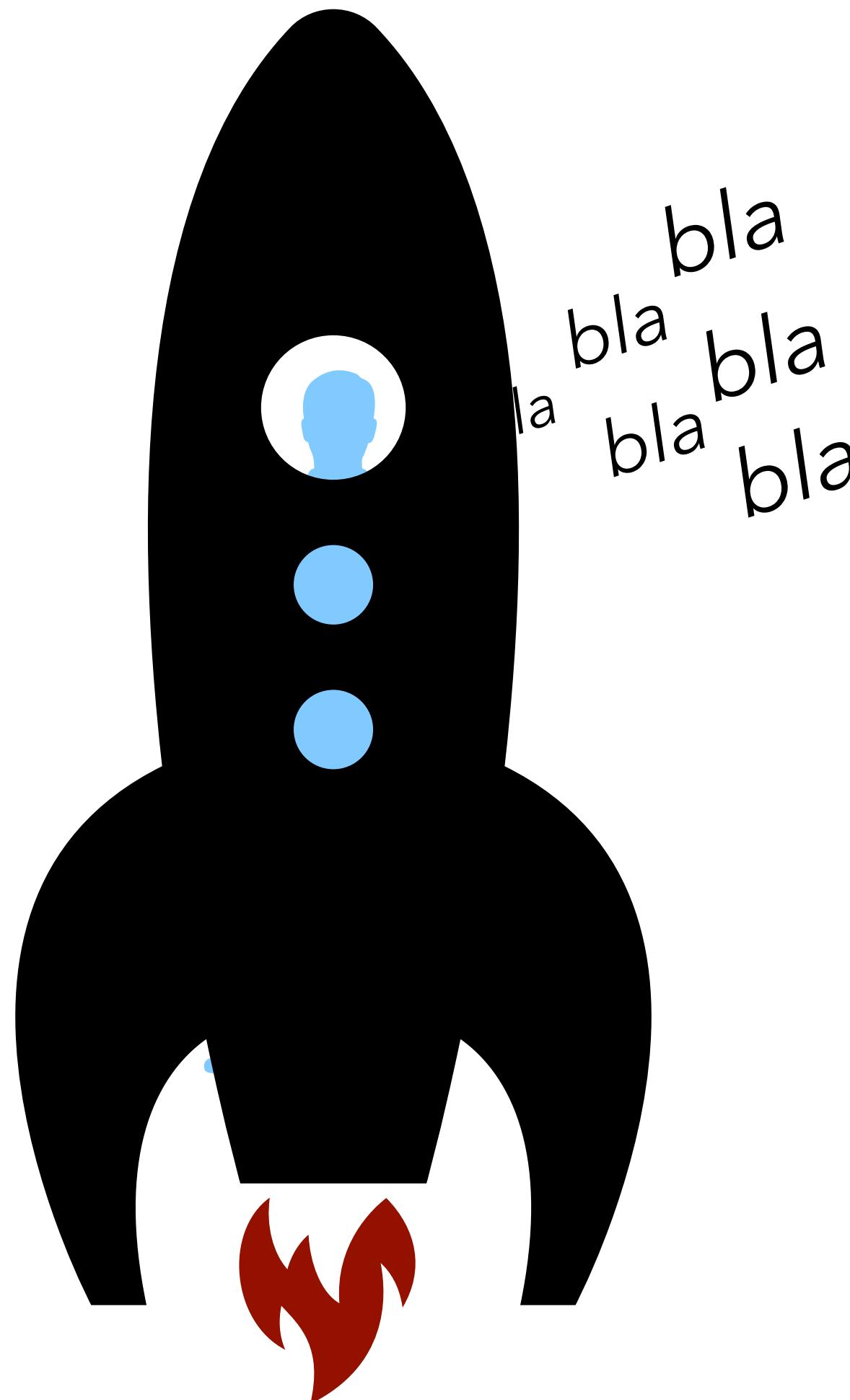
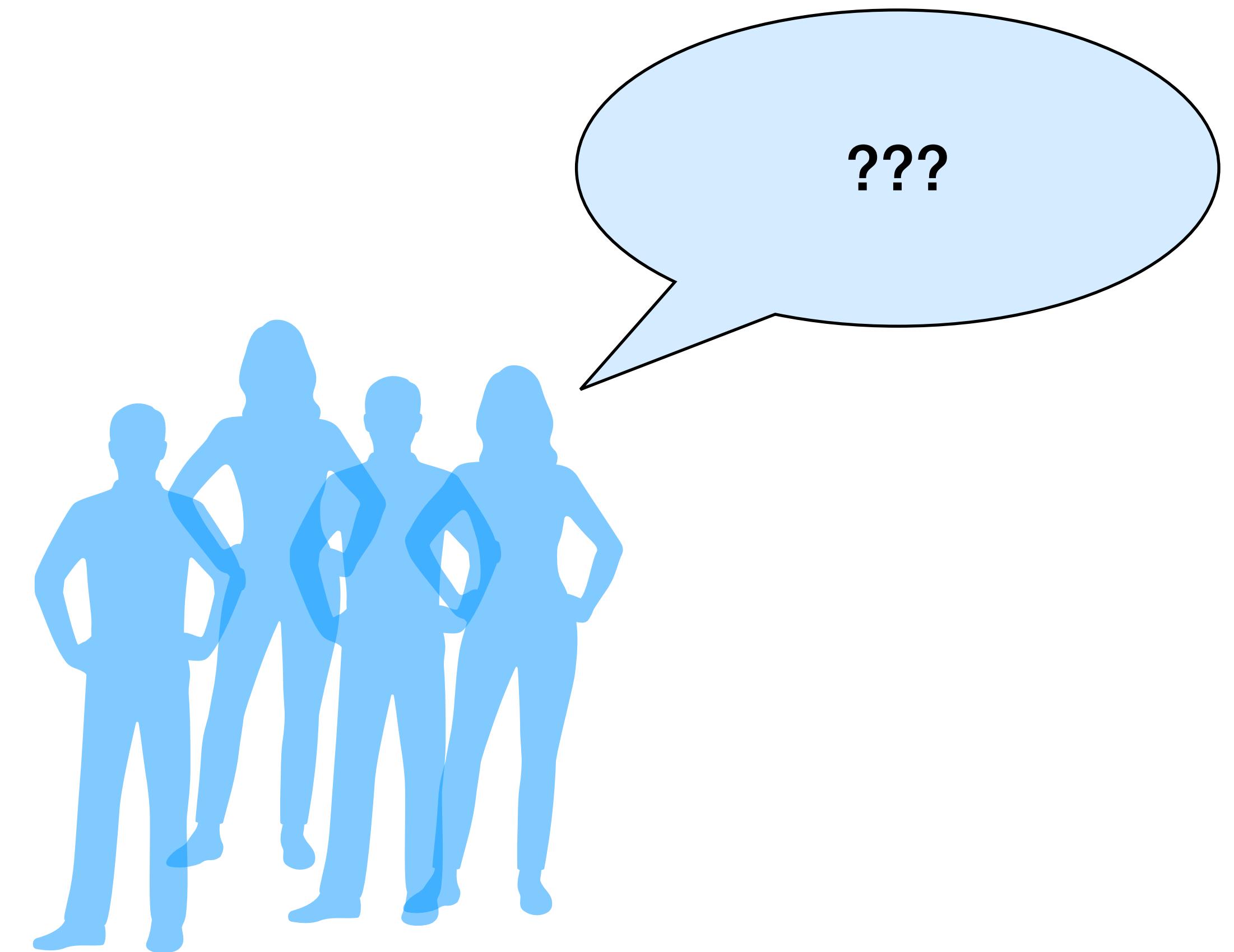
## Active Engagement



**Ask Questions** if you're confused

# How to Learn Theory

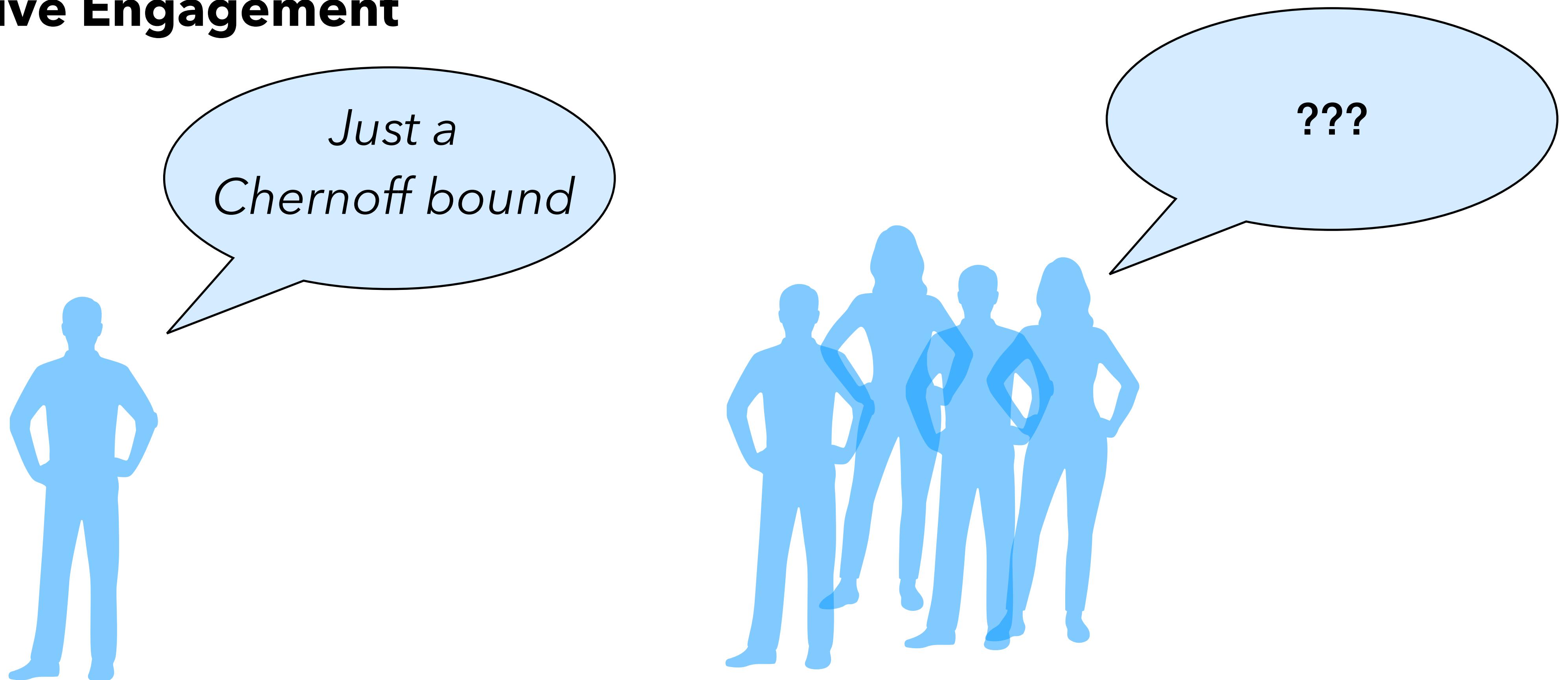
## Active Engagement



**Ask Questions** if you're confused

# How to Learn Theory

## Active Engagement



**Ask Questions** if you're confused

# How to Learn Theory

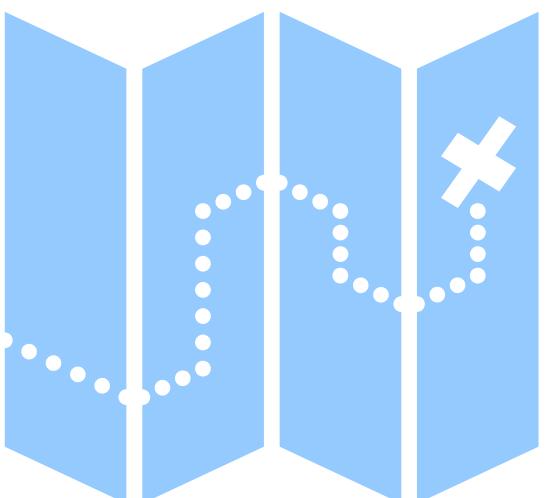
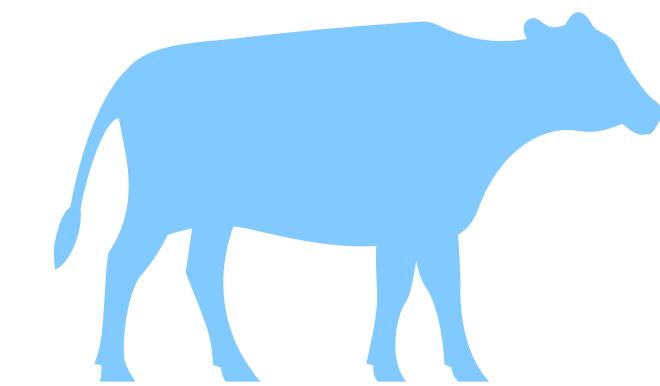
## What to Aim For

**Roadmaps** of proof

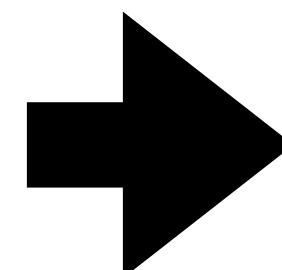
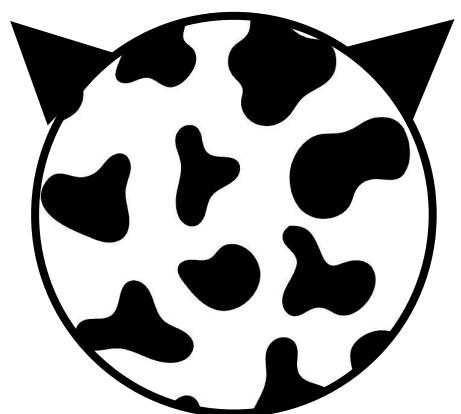


**Tools and stories** you'll remember

**Intuition** of how to think about complexity



*a cow*



*a cow*  
*(up to constants)*

# **How to Do Theory**

# How to Do Theory

## Doing Theory is Hard

### Can Succeed with a Wide Range of Aptitudes:

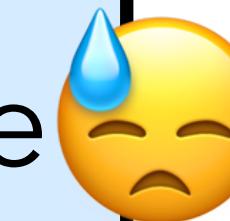
- Mathematical **quick**ness 
- **Good memory** 
- Good ~~intuition~~ 
- Reliable 
- Just really **curious** 
- **Stick-To-Itiveness** 
- **Impatient** / only interested in elegant solutions 
- ...

**Work to Your Strengths**

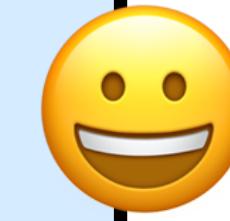
# How to Do Theory

You Will Get Stuck

**Theorem:** Every planar graph is 4-colorable



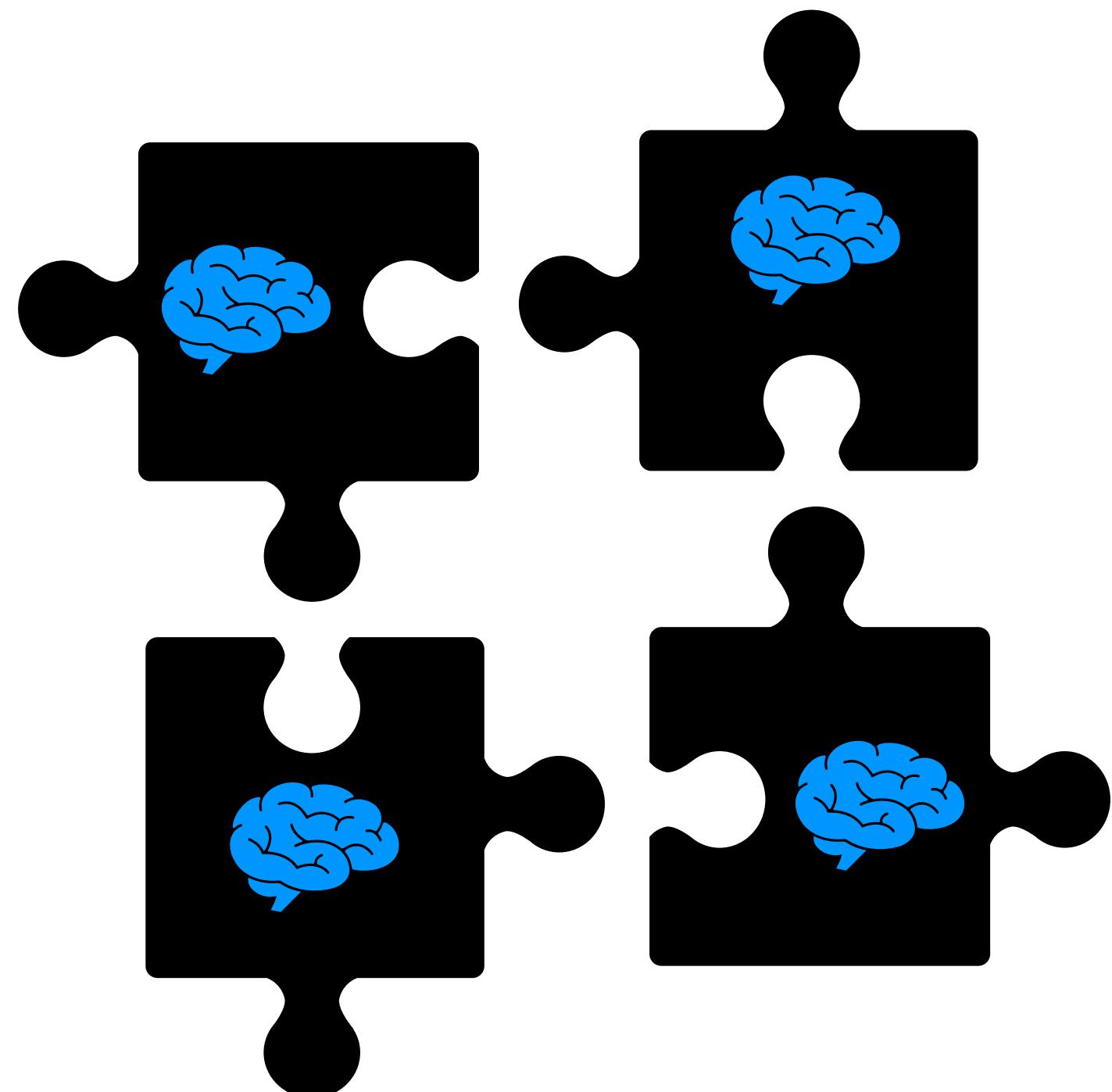
**Theorem:** Every tree is 4-colorable



Simplify your problem

# How to Do Theory

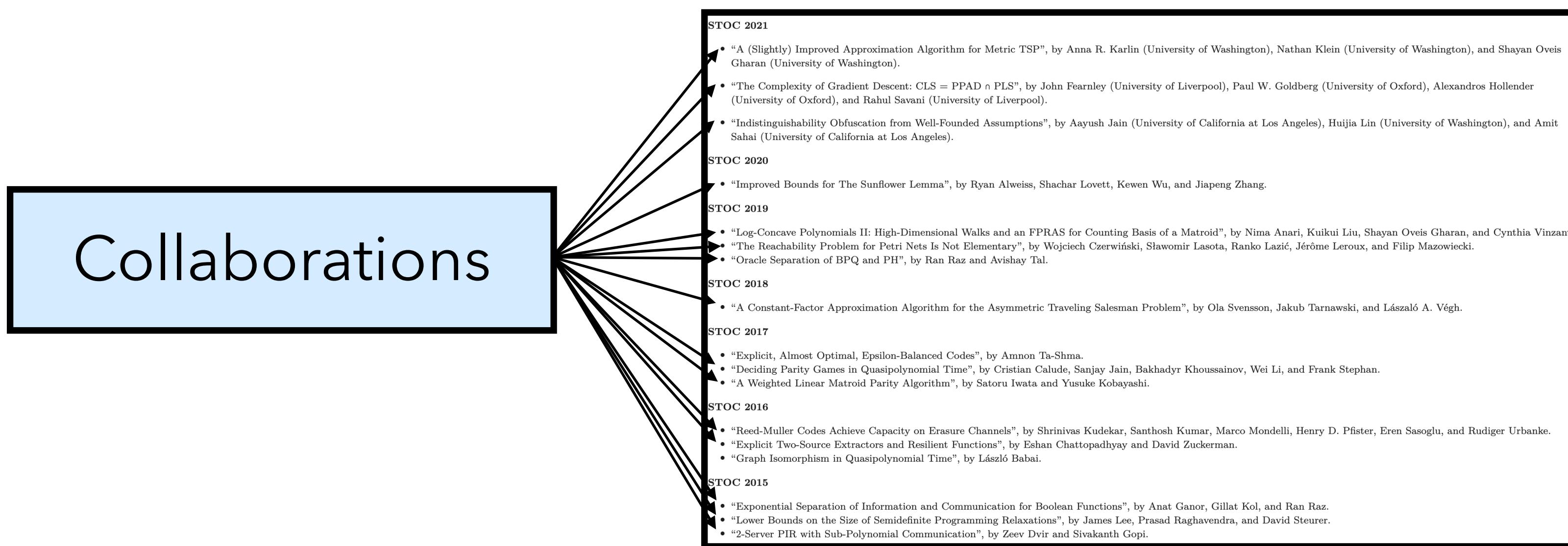
You Will Get Stuck



Collaborate

# How to Do Theory

You Will Get Stuck

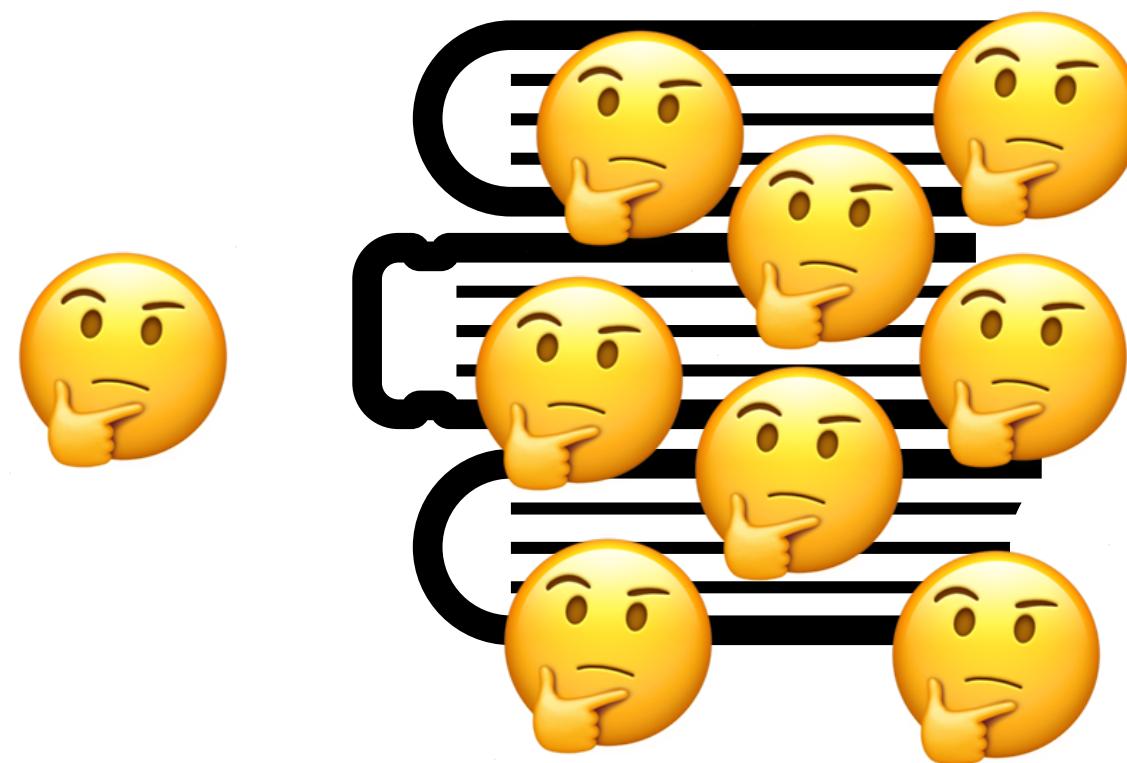


STOC Best Papers

Collaborate

# How to Do Theory

You Will Get Stuck



Read Related Work

# How to Do Theory

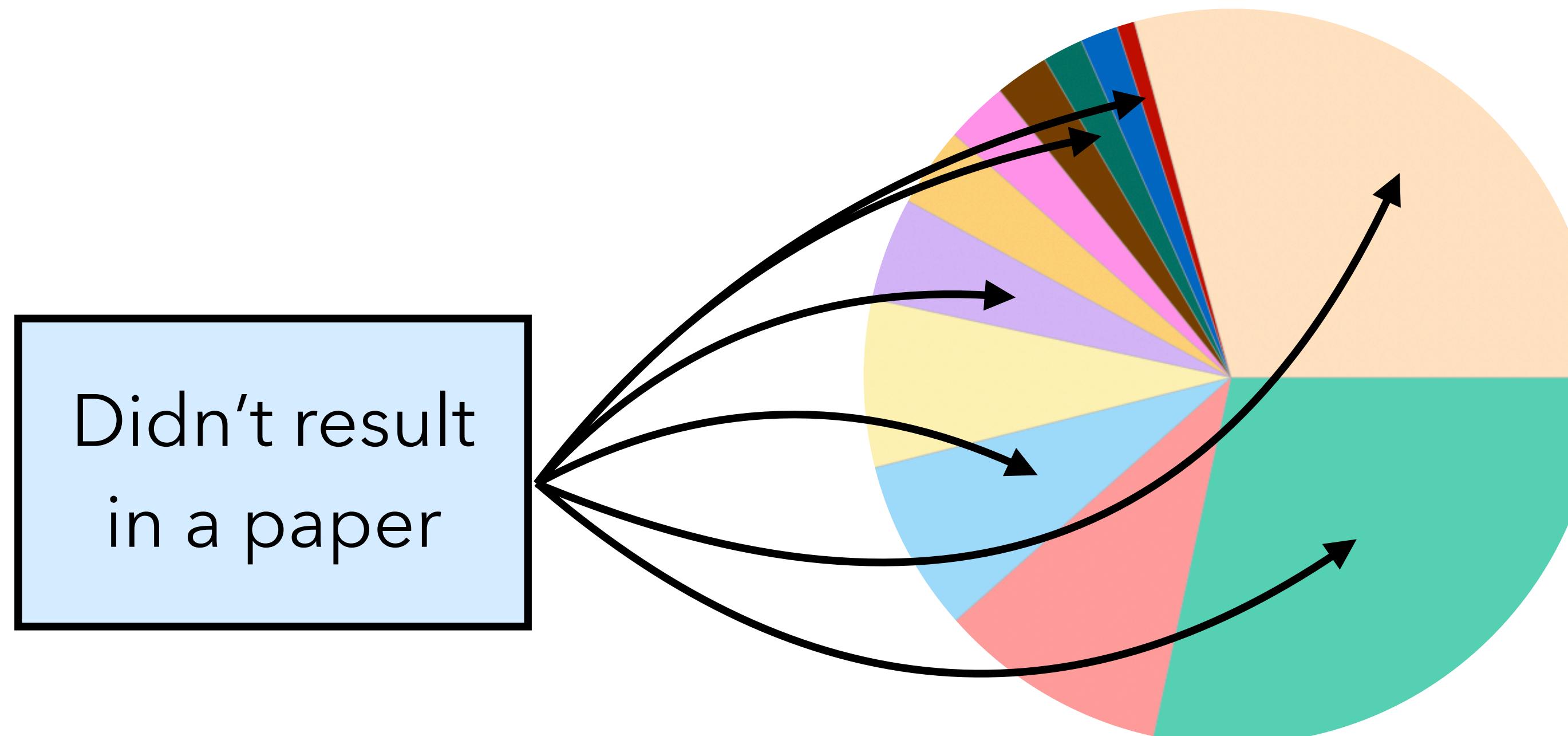
**You Will Get Stuck**



**Cut Yourself Slack**

# How to Do Theory

## A Few Mantras

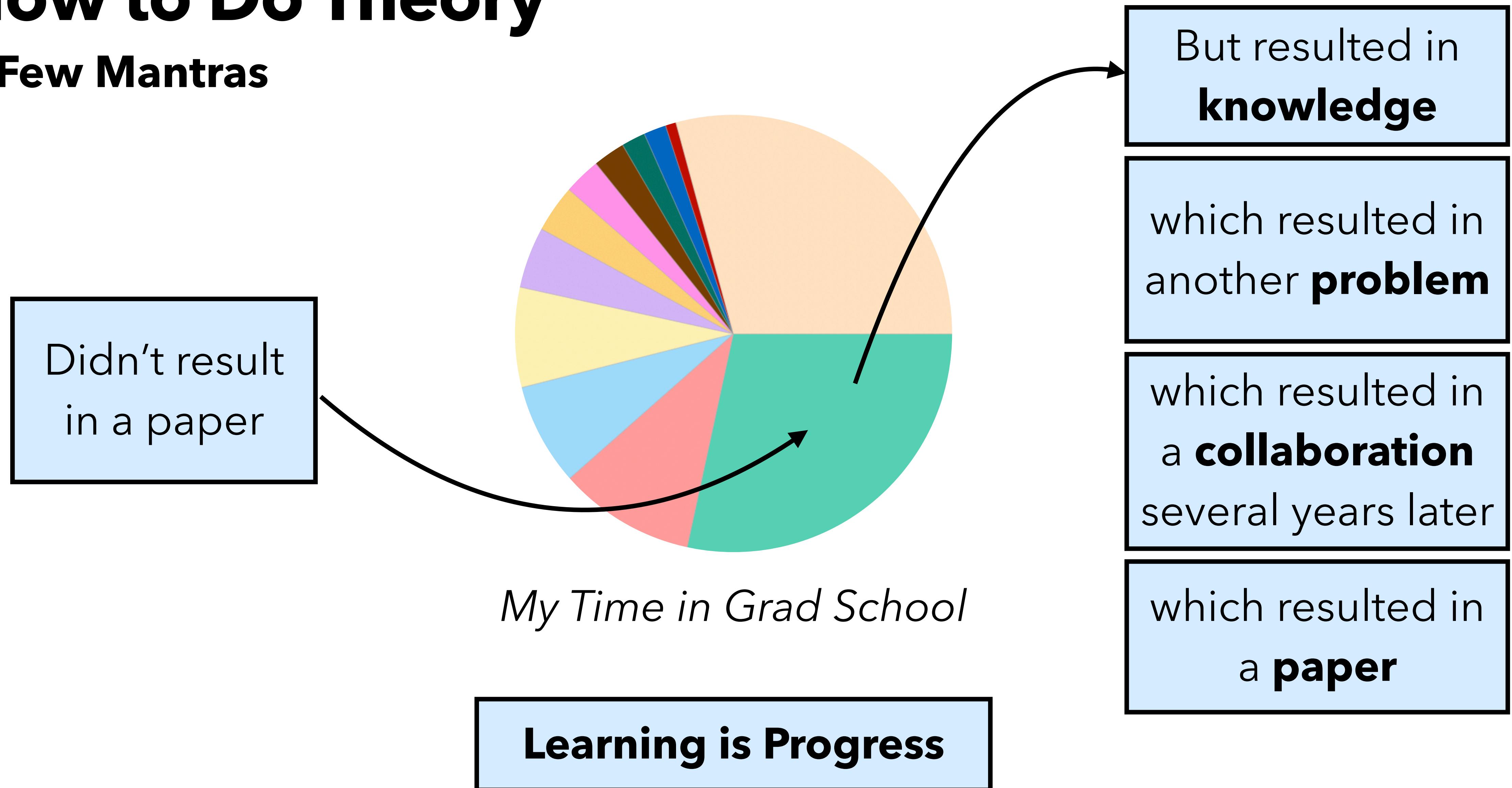


*My Time in Grad School*

**Failure is Common**

# How to Do Theory

## A Few Mantras



# How to Do Theory

## A Few Mantras

### How Theory Problems are Solved

1. Isolate a toy **model case x** of major **problem X**.
2. Solve **model case x** using **method A**.
3. Try using **method A** to solve the full **problem X**.
4. This does not succeed but **method A** can be extended to **model cases x' and x''**.
5. Eventually, it is realized that **method A** relies crucially on a **property P** being true which holds for **model cases x, x' and x''**.
6. Conjecture that **property P** is true for all instances of **problem X**.
7. Discover a family f **counterexamples y, y', y'',...** to this conjecture.
8. Take the simplest **counterexample y** in this family, and try to solve **problem X** for this special case. Meanwhile, try to see whether **method A** can work without **property P**
9. Discover several counterexamples in which **method A** fails, in which the cause of failure can be definitely traced back to **property P**. Abandon efforts to modify **method A**.
10. Realize that **counterexample y** is related to a **problem Z** in another field.

• • •

22. **Method Z** is rapidly developed and extended to get the **solution** to **problem X**.

**Any New Insight is Progress**

# How to Do Theory

## A Few Mantras

Grades



Often

Awards



↓

Internships



→



Undergrad

Theorems  
You  
Prove



Infrequent

Paper  
You  
Write



Grad Student

**How Cool  
Theory Is**



Often

**Learn to Love the Process Not the Outcome**

# How to Write Theory

# Writing Dos and Don'ts

## Bad References



**Theorem 1:**  $1+1+1=3$

**Proof:**

First we show  $1+1=2$ ...

Next, we show  $2+1=3$ ...

**Theorem 2:**  $2+1+1=4$

**Proof:**

First we show  $1+1=2$ ...

Next, we show  $2+2=4$ ...



**Lemma:**  $1+1=2$

**Theorem 1:**  $1+1+1=3$

**Proof:**

By Lemma  $1+1=2$

Next, we show  $2+1=3$ ...

**Theorem 2:**  $2+1+1=4$

**Proof:**

By Lemma  $1+1=2$

Next, we show  $2+2=4$ ...

Abstract out reused arguments into lemmas

# Writing Dos and Don'ts

## Bad References



**Theorem 1:**  $1+1+1=3$

**Proof:**

First we show  $1+1=2$ ...

Next, we show  $2+1=3$ ...

**Theorem 2:**  $2+1+1=4$

**Proof:**

By the argument in Theorem 1,  $1+1=2$

Next, we show  $2+2=4$ ...



**Lemma:**  $1+1=2$

**Theorem 1:**  $1+1+1=3$

**Proof:**

By Lemma  $1+1=2$ ...

Next, we show  $2+1=3$ ...

**Theorem 2:**  $2+1+1=4$

**Proof:**

By Lemma  $1+1=2$ ...

Next, we show  $2+2=4$ ...

Don't reference the insides of other proofs

# Writing Dos and Don'ts

## Bad References



**Theorem 1:**  $1+1+1=3$

**Proof:**

Hershkowitz et al. showed that  $1+1=2\dots$

Next, we show  $2+1=3\dots$



**Lemma**[Hershkowitz et al. ]:  $1+1=2$

**Theorem 1:**  $1+1+1=3$

**Proof:**

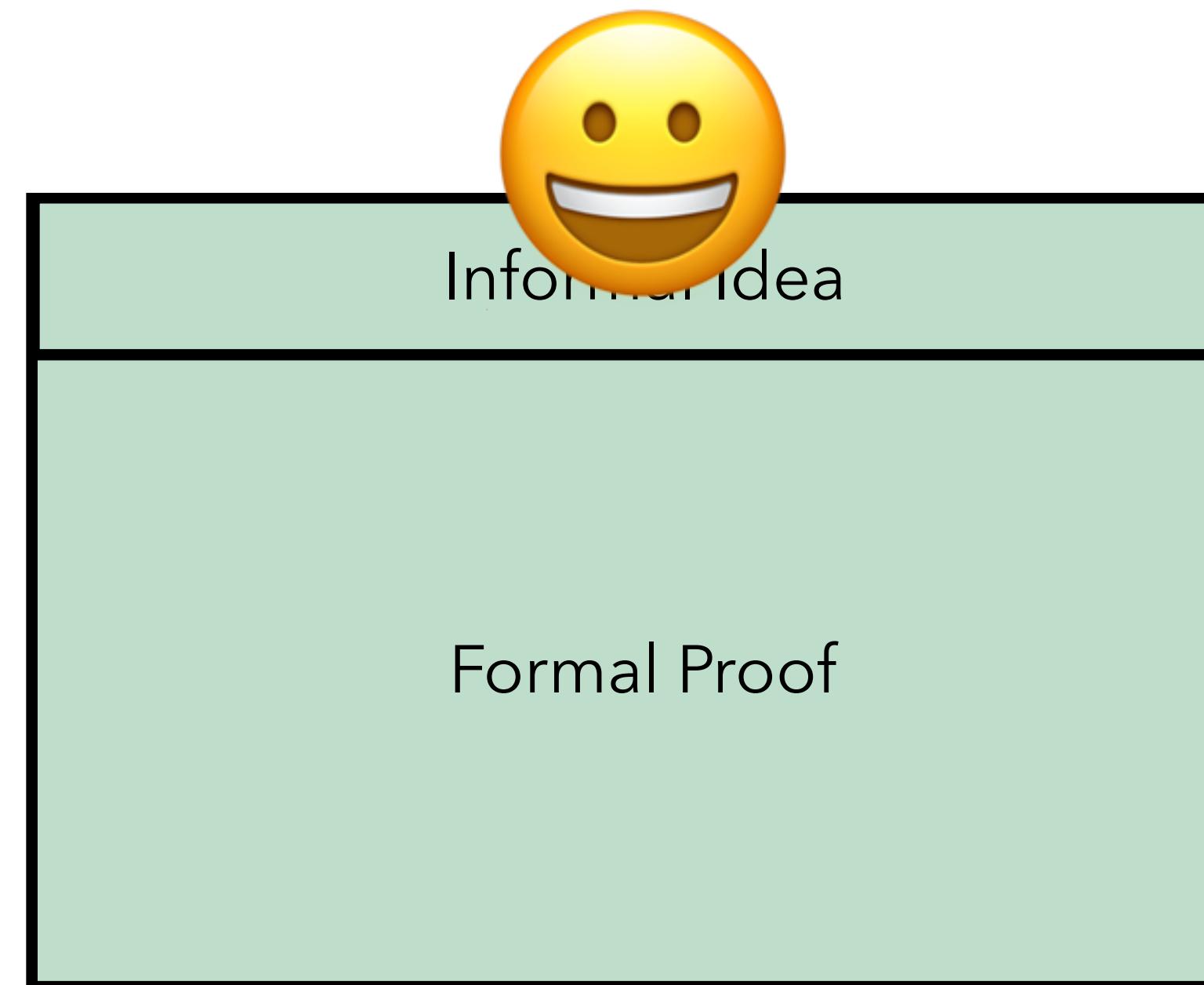
By Lemma  $1+1=2\dots$

Next, we show  $2+1=3\dots$

Don't reference facts not stated as theorems/lemmas/etc.

# Writing Dos and Don'ts

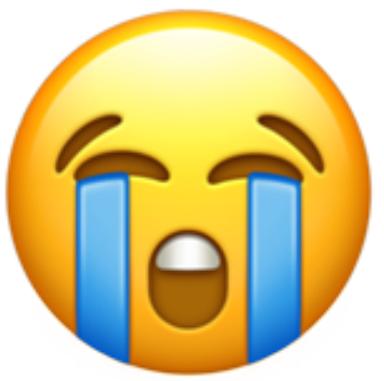
## Intuition



Give intuition / an overview at the beginning of your proofs

# Writing Dos and Don'ts

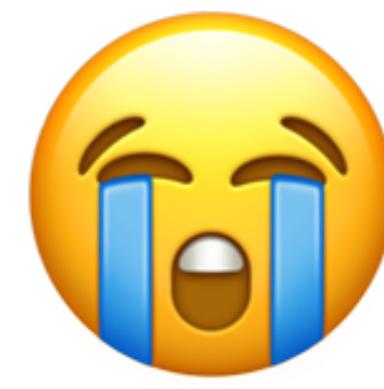
## Intuition



Hand Waving



Just Right

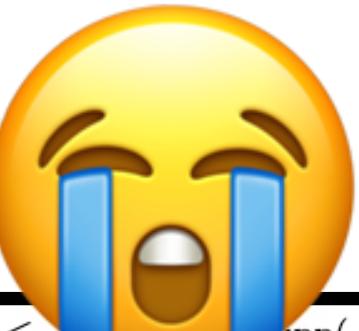


Excruciating  
Formality

Balance intuition and formality

# Writing Dos and Don'ts

## General Style



and so  $\sum_{S,i} \sum_k |\text{supp}(A_{Si,k} \cup B_{Si,k})| \leq \sum_{S,i} |\text{supp}(A_S^{(i)})| \leq \tilde{O}(n^{1+O(\epsilon)} + N^{O(\epsilon)} L^2)$ . Thus, plugging this bound on  $\sum_{S,i} |\text{supp}(A_{Si,k} \cup B_{Si,k})|$  into the guarantees of [Theorem 10.4](#) and the fact that our pairs are  $L \cdot N^{O(\epsilon)}$ -batchable, we have that each time we compute a cutmatch in [step 2](#), the total number of edges we add across all  $G_S$  for  $S \in \mathcal{N}[h']$  for a fixed  $h'$  is at most  $\tilde{O}(m + L \cdot N^{O(\epsilon)} + n^{1+O(\epsilon)} + N^{O(\epsilon)} L) = \tilde{O}(m + n^{1+O(\epsilon)} + L^2 \cdot N^{O(\epsilon)})$ . Since we have  $1/\epsilon$  iterations, it follows that the number of edges across all  $G_S$  for  $S \in \mathcal{N}[h']$  is never more than  $\frac{1}{\epsilon} \cdot \tilde{O}(m + n^{1+O(\epsilon)} + L^2 \cdot N^{O(\epsilon)})$ . It follows that the work and depth to compute all cut strategies for all  $S \in \mathcal{N}[h']$  for all  $1/\epsilon$ -many iterations and all  $h' \leq h \cdot \frac{1}{\epsilon} \cdot (s)^{O(1/\epsilon)}$  a power of 2 in [step 2](#) are respectively  $\frac{1}{\epsilon} \cdot \sum_i W_{\text{cut-strat}}(A_i, m_i)$  and  $\frac{1}{\epsilon} \cdot \max_i D_{\text{cut-strat}}(A_i, m_i)$  where  $|A_i| \leq |A|/L$  for all  $i$  and  $\sum_i m_i \leq \tilde{O}(m + n^{1+O(\epsilon)} + L^2 \cdot N^{O(\epsilon)})$ .



and so

$$\sum_{S,i} \sum_k |\text{supp}(A_{Si,k} \cup B_{Si,k})| \leq \sum_{S,i} N^{O(\epsilon)} |\text{supp}(A_S^{(i)})| \leq \tilde{O}(n^{1+O(\epsilon)} + N^{O(\epsilon)} L^2)$$

Thus, plugging this bound on  $\sum_{S,i} |\text{supp}(A_{Si,k} \cup B_{Si,k})|$  into the guarantees of [Theorem 10.4](#) and the fact that our pairs are  $L \cdot N^{O(\epsilon)}$ -batchable, we have that each time we compute a cutmatch in [step 2](#), the total number of edges we add across all  $G_S$  for  $S \in \mathcal{N}[h']$  for a fixed  $h'$  is at most

$$\tilde{O}(m + L \cdot N^{O(\epsilon)} + n^{1+O(\epsilon)} + N^{O(\epsilon)} L) = \tilde{O}(m + n^{1+O(\epsilon)} + L^2 \cdot N^{O(\epsilon)}).$$

Since we have  $1/\epsilon$  iterations, it follows that the number of edges across all  $G_S$  for  $S \in \mathcal{N}[h']$  is never more than

$$\frac{1}{\epsilon} \cdot \tilde{O}(m + n^{1+O(\epsilon)} + L^2 \cdot N^{O(\epsilon)}).$$

It follows that the work and depth to compute all cut strategies for all  $S \in \mathcal{N}[h']$  for all  $1/\epsilon$ -many iterations and all  $h' \leq h \cdot \frac{1}{\epsilon} \cdot (s)^{O(1/\epsilon)}$  a power of 2 in [step 2](#) are respectively

$$\frac{1}{\epsilon} \cdot \sum_i W_{\text{cut-strat}}(A_i, m_i) \tag{19}$$

and

$$\frac{1}{\epsilon} \cdot \max_i D_{\text{cut-strat}}(A_i, m_i) \tag{20}$$

where  $|A_i| \leq |A|/L$  for all  $i$  and  $\sum_i m_i \leq \tilde{O}(m + n^{1+O(\epsilon)} + L^2 \cdot N^{O(\epsilon)})$ .

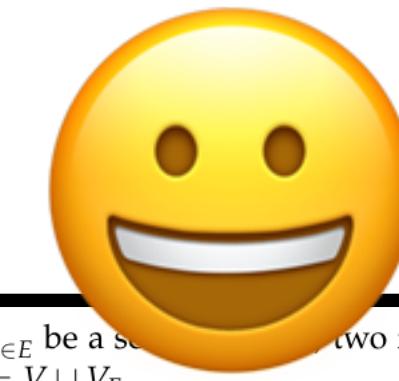
Use whitespace (align\*<sup>s</sup>) generously

# Writing Dos and Don'ts

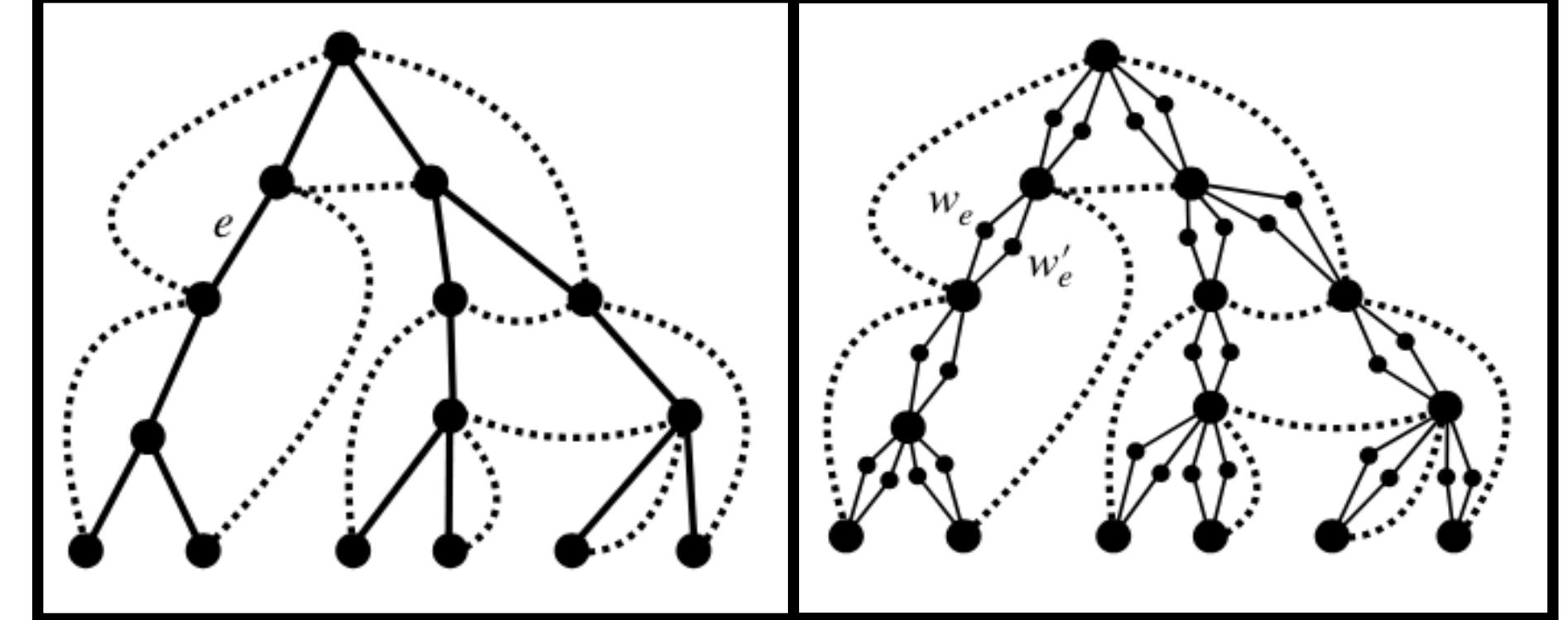
## General Style



1. **Vertices:** Let  $V_E := \{w_e, w'_e\}_{e \in E}$  be a set of vertices, two for each edge of  $E$ . The vertex set of our  $k$ -ECSM instance is  $W := V \cup V_E$ .
2. **Edges:** For each edge  $e = \{u, v\} \in E$ , we have 4 edges in our  $k$ -ECSM instance, namely  $\{u, w_e\}$ ,  $\{w_e, v\}$ ,  $\{u, w'_e\}$ , and  $\{w'_e, v\}$ . Let  $E_{\text{Gadget}}$  be all such edges. The edge set of our  $k$ -ECSM instance is  $B := E_{\text{Gadget}} \cup L$ .
3. **Costs:** The cost of each edge  $b \in B$  in our  $k$ -ECSM instance is 1, i.e.,  $c_b = 1$ .



1. **Vertices:** Let  $V_E := \{w_e, w'_e\}_{e \in E}$  be a set of vertices, two for each edge of  $E$ . The vertex set of our  $k$ -ECSM instance is  $W := V \cup V_E$ .
2. **Edges:** For each edge  $e = \{u, v\} \in E$ , we have 4 edges in our  $k$ -ECSM instance, namely  $\{u, w_e\}$ ,  $\{w_e, v\}$ ,  $\{u, w'_e\}$ , and  $\{w'_e, v\}$ . Let  $E_{\text{Gadget}}$  be all such edges. The edge set of our  $k$ -ECSM instance is  $B := E_{\text{Gadget}} \cup L$ .
3. **Costs:** The cost of each edge  $b \in B$  in our  $k$ -ECSM instance is 1, i.e.,  $c_b = 1$ .



Use (a lot of) figures

# Writing Dos and Don'ts

**LaTeX Nits (many courtesy of Ryan O'Donnell)**



Quoth the Raven “Nevermore”.



Quoth the Raven ``Nevermore”.

Quoth the Raven ”Nevermore”.

Quoth the Raven “Nevermore”.

# Writing Dos and Don'ts

LaTeX Nits (many courtesy of Ryan O'Donnell)



Inner product  $\$<\!\!x,y\!\!>\$$ .

Inner product  $\langle x, y \rangle$ .



Inner product  $\$\\langle\!\! x,y \\rangle\!\! \$$ .

Inner product  $\langle x, y \rangle$ .

# Writing Dos and Don'ts

LaTeX Nits (many courtesy of Ryan O'Donnell)



```
$(\frac{x^2}{y}) \leq z$
```

$$\left(\frac{x^2}{y}\right) \leq z$$



```
\$ \left(\frac{x^2}{y}\right) \leq z $
```

$$\left(\frac{x^2}{y}\right) \leq z$$

# Writing Dos and Don'ts

LaTeX Nits (many courtesy of Ryan O'Donnell)



```
$ALG(x) = \log n$,
```

*ALG(x) = logn*



```
$\text{ALG}(x) = \log n$
```

$\text{ALG}(x) = \log n$

# Writing Dos and Don'ts

LaTeX Nits (many courtesy of Ryan O'Donnell)



Let  $G$  be a  $k$ -connected graph.

Let  $G$  be a  $k$ -connected graph.



Let  $\$G\$$  be a  $\$k\$$ -connected graph.

Let  $G$  be a  $k$ -connected graph.

# Writing Dos and Don'ts

LaTeX Nits (many courtesy of Ryan O'Donnell)

```
\begin{align}\label{eq}
A &\leq B \\
&\leq D
\end{align}
so $A \leq C$ by \ref{eq}.
```



```
\begin{align}\label{eq}
A &\leq B \bnonumber \\
&\leq D
\end{align}
so $A \leq C$ by \ref{eq}.
```



We have

$$\begin{aligned} A &\leq B \\ &\leq C \end{aligned} \quad \begin{array}{l} (1) \\ (2) \end{array}$$

so  $A \leq C$  by Equation 1.

We have

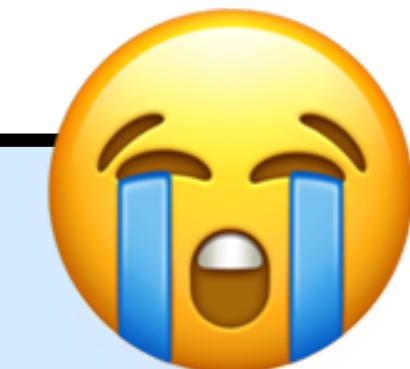
$$\begin{aligned} A &\leq B \\ &\leq C \end{aligned} \quad (1)$$

so  $A \leq C$  by Equation 1.

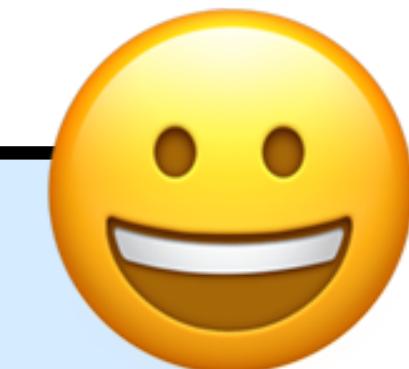
# Writing Dos and Don'ts

LaTeX Nits (many courtesy of Ryan O'Donnell)

```
\begin{proof}
\begin{align}
A &\leq B \\
&\leq D
\end{align}
\end{proof}
```



```
\begin{proof} We have
\begin{align}
A &\leq B \\
&\leq D \text{ \b{qedhere}}
\end{align}
\end{proof}
```



*Proof.*

$$\begin{aligned} A &\leq B \\ &\leq D. \end{aligned}$$

□

*Proof.* We have

$$\begin{aligned} A &\leq B \\ &\leq D. \end{aligned}$$

□

# Writing Dos and Don'ts

**LaTeX Nits (many courtesy of Ryan O'Donnell)**



Math is fun, e.g. algebra.

Math is fun, e.g. algebra.



Math is fun, e.g. \ algebra.

Math is fun, e.g. algebra.

# Writing Dos and Don'ts

LaTeX Nits (many courtesy of Ryan O'Donnell)



Math is fun, e.g. algebra.



Math is fun, e.g. \ algebra.

Math is fun, e.g. algebra.  
Math is fun, e.g. algebra.



# Summary

**Learning**

**Doing**

**Writing**

Simplification



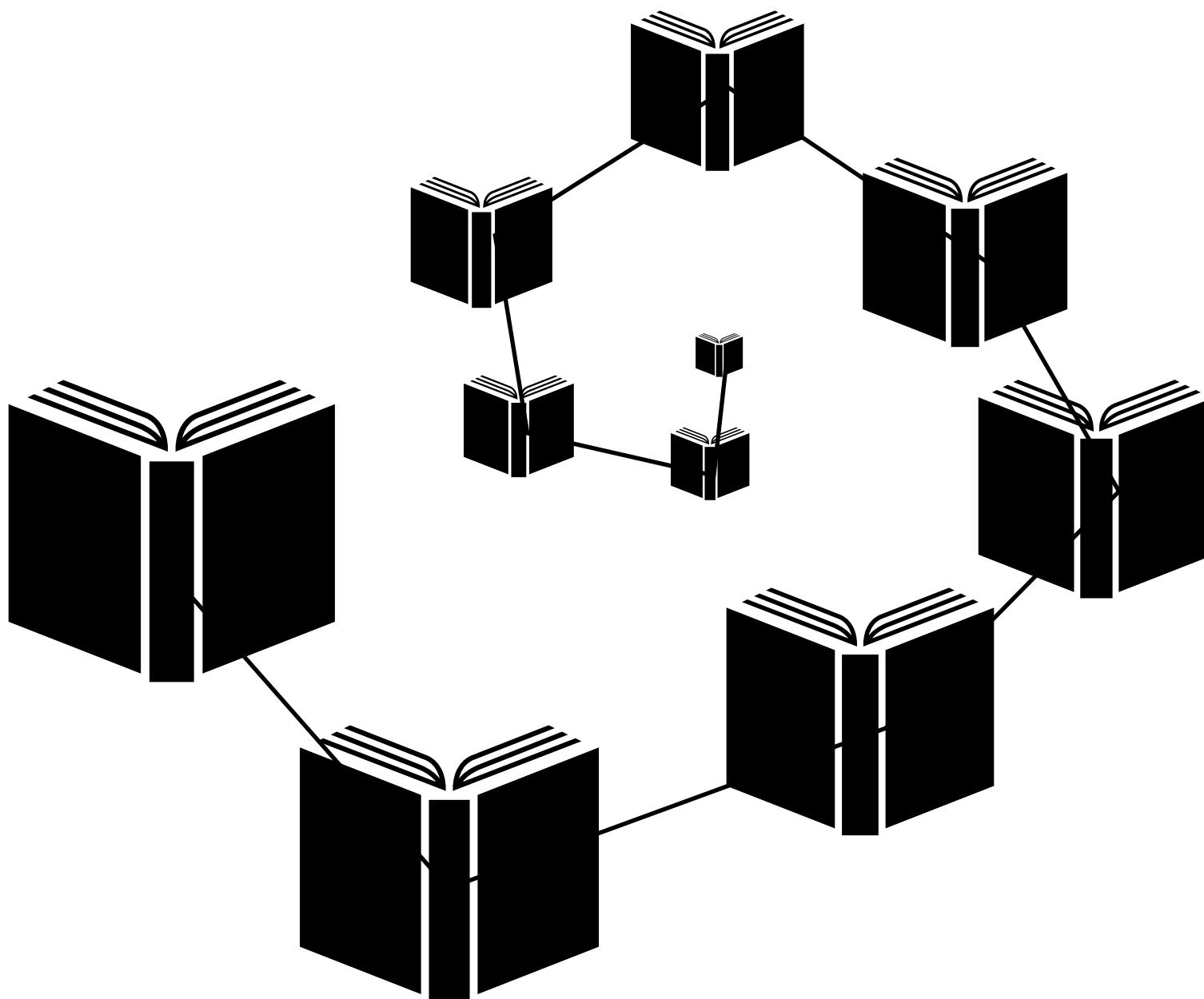
Active



# **Why Do Theory**

# Why Do Theory

Infinite **learning opportunities** of beautiful facts

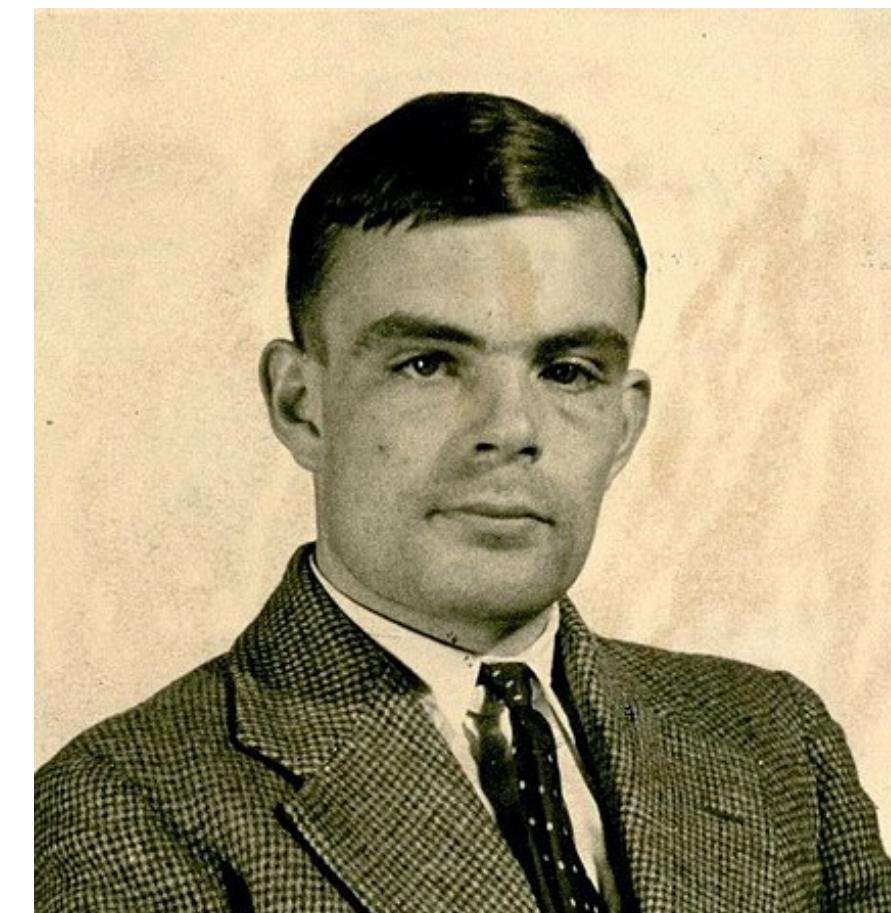


# Why Do Theory

It's a **young** field (less to get up to speed with)



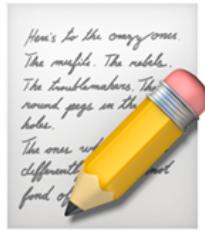
~2000 Years Ago



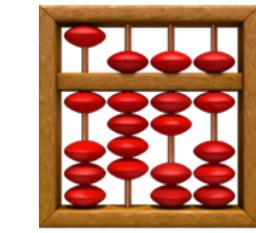
~100 Years Ago

# Why Do Theory

Uniquely at the intersection of the **creative** and the **formal**



and (sometimes) the **practical**



# Why Do Theory

*Theory*

+

“*Music is the only **magic** left in this world.*”



*-Bob Dylan*

*-My dad*

1. guided by arcane laws
2. results often defy common sense
3. takes intense study to master