<u>Today</u>

$$\sum_{i=0}^{\infty} r^{i} = \frac{1}{1-r}$$

Last time: every graph is a tree wit Min s-t cuts This time: every graph/metric is (approximately) a tree wit distances Say metric (V,d) is a tree metric if it embeds isonetrically into (V,d_T) where d_T is the shortest Path distances in some edge-weighted tree T=(V,E,w) <u>Goal</u>: embed an arbitrary metric into a tree metric w/ low distortion (b/c Problems an tree Are cosier)

$$d_{0}(u,v) = 1$$
 and $d_{T}(u,v) \ge 1$
but $d_{T}(u,v) = \Omega_{0}(n)$

An <u>or-distortion probabilistic tree embedding</u> of (v,d) is a distribution over trees γ Containing V s.c. V u, VEV

Theorem: every metric has a (Poly-time sampleable) O(log n) - distortion tree embedding

(Optimal by expanders)

Structure of
$$T \in Y$$

WLOG $d(u,v) \ge 1$ Vulve EV and let $\Delta := 2^{x}$ be num power of 2 set. $d(u,v) \le \Delta$ VulveV
T has
 $-1 + \log \Delta$ levels $:::$
 $- Level i \sim a 2^{-diameter}$ Clustering of V
 \therefore level $\Delta = 2^{-diameter}$ (level $\Delta = 2^{-diameter}$
 $(evel legits)$
 $(evel legits)$
 $(evel legits)$
 $(evel ligits)$
 $(evel ligits)$

Now need to take about how to generate each tree

Note: satisfies structure by construction

Fix
$$u_{i,v} \in V$$

Say $u_{i,v} \underbrace{\text{Settles}}_{i,v} \underbrace{(u_{i,v})}_{i,v} \underbrace{(u_{i,v})}_{i,v$

Proof of Claim 1

Consider w ordered by d(w, Eu,vs) Clust Procedo w only settles $\{u, v\}$ if it precedes all w's.t. $X_{uv} < X_w$ Since TT is a uniformly random permutation, this happens of $Pr \leq \frac{1}{X_{w}}$ Proof of Claim 2 WLOG suppose $d(u, w) \leq d(v, w)$ w cuts $\{u, v\}$ at level i only if $u \in B(w, r_i)$, $V \notin B(w, r_i)$ v u W This happens only if $d(u, w) \leq r_i \leq d(v, w)$ But $\Gamma_i \in [2^{i-1}, 2^i]$ so $\Pr(C_{i\nu}) \neq 0$ only if $[2^{i-1}, 2^i] \cap [d(u, \nu), d(v, \nu)] \neq \emptyset$ X+1 2^X 2^{X-2} 2^{X-3} This is only true if 2^{i-1} or $2^{i} \in [d(u,u), d(u,v)]$ $Thus \quad \sum_{i}^{l} 2^{i+2} \Pr(C_{iw}) = O(l) \cdot \sum_{i=\log_{i} d(w_{i}w)}^{log d(w_{i}w)} = O\left(\frac{\log_{i} d(w_{i}w)}{\sum_{i=\log_{i} d(w_{i}w)}^{log d(w_{i}w)}}\right) = O\left(\frac{d(w_{i}w) - d(w_{i}w)}{\sum_{i=\log_{i} d(w_{i}w)}^{log d(w_{i}w)}}\right) = O\left(\frac{d(w_{i}w) - d(w_{i}w)}{\sum_{i=\log_{i} d(w_{i}w)}^{log d(w_{i}w)}}\right)$

Embedding a (yole into a Tree Requires I(n) Distortion

Claim: If G=(V,E) is an edge-weighted cycle then entedding (V,d6) into (V,dp) for P=(V,E,w) a pull Let S,t EV be an arbitrary pair s.t. $d_{G}(s,t) = \frac{n-1}{2} \approx \frac{n}{2}$ Color the vertices tedges in G between sit real types by path s Let X be the red vertex s.t. $d_6(x,s) = d_6(x,t) \approx \frac{n}{4}$ Notice $d_{L}(x,y) \ge \frac{n}{4}$ \forall green y so by non-contractingness of embedding every vertex within $\frac{n}{4}$ of X in P is red S Strange But then] a green codge (a,63 as above -> disjortion IL(n) Fact [Gupta]: if (V,d) is a tree metric, then UUSV (U,d) embeds into a tree metric w/ distortion 58 <u>Claim</u>: If G=(V,E) is an edge-weighted cycle then enhedding (V,d₆) into a tree metric (V', dr) requires distortion A(n) AFSOC = embedding of (V,d6) into (v,d7) for T a tree w/ dictorion o(n) By fact, 3 enbedding of (V, d_6) into (V, d_{τ}) of d_{τ} by distortion $\mathcal{B} \cdot o(n) = o(n)$ Let T be tree w/ Min edge weight I achieving this distortion T must be a path Ver and a AFSOC = v s.t. deg. (v) 23 Color vertices of G redtgree as WLOG V has 22 red nerghbors 1,5 4/ 1 closer to V in G Modify Tas But then (U,de) was enhedded of distortion o(n) into (U,dp) for P=T a Path, >< Claim