Today - Probabilistic Subtree Embeddings - Min - Congestion (Oblivious) routing - Tree - Bused Oblivious Routing - O(byn) - conpetitive)

An <u>a</u>-distortion probabilistic tree embedding of (V,d) is a distribution over trees ? Containing V s.t. V u, vEV $I) d(u,v) \leq d_T(u,v) \quad \forall T \in \Upsilon$ $\Sigma) \underset{T \to T}{\mathbb{E}} \left[d_{T}(u,v) \right] \leq \alpha \cdot d(u,v) \qquad \widehat{\uparrow}$ "FRT" Theorem: every metric has a (Poly-time sampleable) O(logn)-distortion tree embedding T (u,v) Given tree T=(V,E), let T(u,v) be the unique (Simple) unou path in T let T{e} be sev s.t. $\delta(e) = \{e\}$ T{e} Dual LP min <-c,x) max <(,x) 5.1, Ax <6 Max $\langle -1, \lambda \rangle$ Min $\langle b, \lambda \rangle$ s.t. $A^T \lambda = c^T$ 150 (Dual) $D' \leq P' \qquad P', p' = -P, -D$ (Prinal) Strong Duality: If Primal feasible + bounded then P=D

Will use Subtree embeddings's result from lost Closs also works but takes longer to describe <u>Ptobabilistic</u> Subtree Embeddings

<u>Fact</u>: Given edge-weighted graph G=(V,E,w), 3 a distribution Υ over spanning trees of G s.t. $\mathbf{E}[d_{T}(u,v)] \leq \widetilde{O}(\log n) \cdot d_{G}(u,v)$ $\forall u,v \in V$ where d_{T} gives shortest fails $\in T$ with w treat

Note: $d_{C}(u,v) \leq d_{T}(u,v)$ $\forall T \in i$ b/c T is a spanning tree

Stronger than tesult from last class (up to leyby) b/c (1) spanning trees and

(2) T on some vertex set as G

PTE Corollary: Given edge-weighted graph G=(V,E,~),] a spanning tree TCG s.t.

$$\sum_{(u,v) \in E} d_{\tau}(u,v) \leq \widetilde{O}(\log n) \cdot \sum_{(u,v) \in E} \omega(u,v)$$

Note: this says $\exists a$ spanning tree that, on average, dislorts edges $\leq \tilde{O}(\log n)$ Proof busically by Lo E Let Υ be distribution from fact so by Loff have $\underset{T \sim T}{\mathbb{E}} \left[\underset{[i_1,i_2] \in \mathbb{E}}{\bigcup d_T(u,v)} \right] \leq \tilde{O}(\log n) \cdot \overline{\Sigma}_i^{i_1} w(\underline{e}_i,v_i^{i_2})$ $\underset{[i_1,v_2] \in \mathbb{E}}{\bigcup d_T(u,v)} \leq \tilde{O}(\log n) \cdot \overline{\Sigma}_i^{i_1} w(\underline{e}_i,v_i^{i_2})$ So by averaging, rust \exists at least 1 spanning tree T s.t. $\underset{[i_1,v_2] \in \mathbb{E}}{\bigcup d_T(u,v)} \leq \tilde{O}(\log n) \cdot \overline{\Sigma}_i^{i_1} w(\underline{e}_i,v_i^{i_2})$

So far: all graphs are ∞ trees with cuts and distances Today: all graphs are ∞ trees with routing

Tree-Bases Oblivious Routing Say Oblivious routing algorithm is tree-based if 3 a distribution over spanning trees Y s.e. $\mathcal{O}_{st} := T(s,t) \text{ for } T \sim \tilde{1}$ ١/3 May seem restrictive but very nice to analyze as ter the following claim Given spanning tree TSG, let the load on e be $L_T(e) := |\xi(T(e))|$ Given distribution Y over spanning trees, let the load on e be $L_{Y}(e) := \lim_{x \to Y} [L_{Y}(e)]$ and let $L(\gamma) := \max L_{\gamma}(e)$ Clain: any tree-based oblivious routing scheme w/ tree distribution 7 is L(7)-competitive

Fix a demand D, a TET and eET, let $D(T\{e\}) := \sum_{i}^{t} \sum_{i}^{t} D(u,v) + D(v,v)$ Have $OPT_{D} \ge D(T\{e\}) / L_{T}(e)$ b/c routing D requires $\ge D(T\{e\})$ paths to cross T{e}

$$\begin{bmatrix} e \\ D_T(e) &= 3 \\ D(T(e)) &= 6 \end{bmatrix} \rightarrow O(T_p \ge 2)$$

$$E \setminus T$$

So $(on(P_{p}(e)) = \sum_{i=1}^{r} Pr(T) \cdot D(T\{e\}) \leq \sum_{i=1}^{r} Pr(T) \cdot L_{T}(e) \cdot OPT_{p} = OPT_{p} \cdot L_{\gamma}(e)$ $T \in T$ $So \quad \forall e_{y} D$ have $(on(P_{p}(e)) \leq L_{\gamma}(e) \cdot OPT_{p} \leq L(\gamma) \cdot OPT_{p}$ so get L(T)-competitive So now showing theorem just requires γ w/load $\leq O(\log n)$ Finding Low Load Spanning Tree Distributions <u>Claim</u>: Given graph G=(V,E), \exists a distribution Υ over spanning trees s.t. $L(\Upsilon) \leq \widetilde{O}(\log_{2})$ Can exactly capture problem of finding ~ Minimizing L(1) w/ an LP os follows Variable X_T for $\Pr(T)$ and z for $L(\Upsilon)$ Min Z S.t. $\sum_{r=1}^{T} x_r = 1$ Con solve in Poly-time Via ellipsoid + MW4 so $\sum_{\substack{T \neq e \\ T \neq e}} X_T \cdot L_T(e) \leq Z \quad \forall e \in \mathbb{E}$ all algorithmic $X_{T} \ge 0 \quad \forall STS T$ Not Clear why I good solution; show by taking dualise derivation lato-Variable we yeek and r Max P S.t. $\sum_{i=1}^{r} d_{T}(u,v) \geq \int \cdot \sum_{i=1}^{r} w_{e} \quad \forall SIS T$ $\{u,v\} \in E \quad e \in E \quad \text{length of } T(u,v) \quad w/ \quad w \text{eights } w$ wp >0 Ye Let P, D be optimal primal, dual values WTS $P \leq \widetilde{O}(\log n)$ By strong duality P=D so uts $D \leq \widetilde{O}(\log n)$ Consider any feasible dual solution (w,D) By PTE corollary, \exists spaning tree T s.t. $\Sigma^{t} d_{T}(u,v) \leq \widetilde{O}(\log n) \cdot \Sigma^{t} w_{e}$ By corresponding constraint \in duel LP for T, know $D \cdot \sum_{w \in E} w \in E(d_T(w, w) \leq \widetilde{O}(\log n); Z)^w \in C(\log n)$ $\zeta_0 \quad D \leq \widetilde{O}(\log n)$ Õ(logn)-Conpetitive OR follows by 2 (la:Ms

Derivation of Duel

Dual

I (JT) - Competitiveness of Deterministic Oblivious Routing a deterministic algorithm is <u>oblivious</u> if $V s_{,t} \in V \exists s_{,t} P ath P s_{,t}$. $P_{p} = \{P_{st}: D(s_{,t})=1\}$ Notice Consider the following graph restering) Complete 6: partite graphs Fix the deterministic Oblivious routing algorithm and let Pst be its sout tath Let $P_i := P_{s_i t_i}$ For eEM, let $P_e := \{P_i : e \in P_i\}$ and let $D_e(s,t) := \begin{cases} 1 & \text{if } s_i = s_i, t_i = t_i, e \in P_i \\ 0 & 0/\omega \end{cases}$ be routed denod So ye have con (Sp.) 2 |Bel By averaging, ∃ ē s.t. (Bēl≥ S2 (Vīn) For simplicity suppose $|\vartheta_{\overline{e}}| = \Theta(\overline{u_{\overline{n}}})$ (if not, just drop pails from $\vartheta_{\overline{e}}$) So $\operatorname{Con}(\mathcal{B}_{p_i}) \ge \operatorname{L}(\operatorname{dn})$ OTOH \forall D that only send from S to T and $\xi^{\dagger}_{0}(u,v) \leq O(\sqrt{n})$ $\exists P_{D} \text{ routing } P \quad w/ (o_{n}(P_{D}) = O(1))$ Thus, the algorithm is $\mathcal{Q}(\overline{un})$ - (on Petitive