Today -Probabilistic Subtree Embeddings - Min-Congestion (Oblivious) routing - Tree-Bosed Oblivians Routing $-$ O(log n) - competitive \mathcal{T}

Will use Subtree embeddings's result from last class also works but takes longer to describe Probabilistic Subtree Embeddings

Fact: Given edge-weighted graph G=(V,E,w), 3 a distribution γ over spanning trees of G Siven edge-weighted graph G=(V,E,w), 3 a distribution "I over spanning trees of G
S.t. E[d_T(u,v)] S G(logn)·d_G(u,v) Wu,vEV where d₇ gives shortest paths ET writ in
This requi

Note: d_G(u,v) Sd_T(u,v) <code>VTEY</code> b/c T is a spanning tree

stronger than result from last class (Up to loglog) 6/C (1) Spanning trees and

6) T or same vertex set as ^G

PTE Corollary: Given edge-weighted graph G=(U,E,w), I a spunning tree TS6 s.t.

weighted graph G= (V,E, V),
\n
$$
\sum_{i=1}^{n} d_{\tau} (v,v) \leq \widetilde{O} (log n) \cdot \sum_{\{u,v\} \in E} \omega (v,v)
$$

Note: this says \exists a spanning tree that, on average, distorts edges \leq $\widetilde{O}(\log n)$ Proof basically by LoE Let γ be distribution from fact so by LoE have $\begin{array}{ll} \gamma & \text{le} & \text{distribution.} \text{ from } \text{fact s} \ \text{If } \left[\sum\limits_{f \in \mathcal{M}} d_{\tau}(\omega, v) \right] \leq \widetilde{O}(\log \gamma) \cdot \sum\limits_{\{u,v\} \in \mathcal{E}} \omega(\epsilon_{u}, v) \end{array}$ EU,v3EE So by averaging, must 3 at least I spanning tree T s.t. $\sum_{\{u,v\}\in E} d_\tau(\omega,v) \leq \widetilde{O}(\log \gamma) \cdot \overline{\zeta}$ (unite $\{\omega,v\}\in$

So far: all graphs are x trees wrt cuts and distances Today: all graphs are x trees wit routing

↑ree-Based Oblivious Routing say oblivious routing algorithm is tree-based if I ^a distribution over sparring trees [↑] S. t . $\hat{\mathcal{O}}_{\mathsf{S}\mathfrak{t}}:=\mathsf{T}(\mathfrak{s}\mathfrak{t})$ for $\mathsf{T}\!\!\sim\!\!\mathfrak{I}$ \mathcal{Q} 1/1 $\frac{2\pi}{\pi}$
solonoment
di - 10.17
d O ^g ^O ^g ^O 0 S 8 pt $s \circ \bigwedge_{o} t$ so $\circ \bigwedge_{o} t$ O 。 *o*
 o $\begin{array}{ccc} \circ & & \circ \\ \circ & \circ & \circ \end{array}$ \circ \multimap 1/3 1/3 1/3

and the load of the load of the following claim
 $\frac{e}{1/3}$ be L_T(e): = $\frac{e}{8}$ (Tfei) $\frac{e}{1/7}$

(e be L_T(e): = $\frac{e}{8}$ (Tfei) $\frac{e}{1/7}$

(e be L_T(e): = $\frac{e}{1/7}$ (L_T(e)

(e) the distribution 7 is L(

May seem restrictive but verydice to analyze as per the following claim Given spanning tree TSG, let the l<u>oad on e</u> be L as for the following Claim
 $\tau(e) := | \delta(e) \tau(e)|$ Given distribution γ over spanning trees, let the load on e be $L_{\gamma}(e) := \mathop{\mathbb{E}}_{\tau \sim \gamma} [L_{\tau}(e)]$ and let $L(\gamma) := \max_{\gamma} L_{\gamma}(e)$ Clain: any tree-based oblivious routing scheme w/ tree-distribution 7 is L(7)-Competitive Fix a demand D, a TEY and $e \in T$, $\left\{ e^+ \right.$ $\mathcal{D}\left(\text{Tr}(e^z) \right) := \sum\limits_{u \in \text{Tr}(e)} \sum\limits_{y \notin \text{Tr}(e)} \mathcal{D}(u,v) + \mathcal{D}(v,u)$ Have $OPT_D \ge D(T\{\epsilon\})/L_T(e)$ b/c routing D requires $\ge D(T\{\epsilon\})$ paths to cross T{e}

 $\begin{aligned} \mathcal{S}(\mathcal{S}) \geq \mathcal{S}(\mathcal{S}) \geq \mathcal{S}(\mathcal{S}) \end{aligned}$
 $\begin{aligned} \mathcal{S}(\mathcal{S}) \geq \mathcal{S}(\mathcal{S}) \geq \mathcal{S}(\mathcal{S}) \end{aligned}$
 $\begin{aligned} \mathcal{S}(\mathcal{S}) \geq \mathcal{S}(\mathcal{S}) \geq \mathcal{S}(\mathcal{S}) \end{aligned}$ $\sum_{\tau \in \Upsilon} \Pr(\tau) \cdot L_{\tau}(\epsilon) \cdot \text{OPT}_{\mathcal{D}} = \text{OPT}_{\mathcal{D}} \cdot L_{\gamma}(\epsilon)$
Te T So $\forall e, D$ have $(o_n(\rho_p(e)) \leq L_{\gamma}(e)$.09 $\Gamma_p \leq L(\gamma)$.09 Γ_p so get $L(\tau)$ -conpetitive So now showing theorem just requires γ w/ loud $\leq O(\log n)$

Finding Low Load Spanning Tree Distributions Claim: Given graph G=(V,E), 3 a distribution ² over spanning trees s.t. L(T)sõling)
Can exactly capture problem of finding ²1 Minimizing L(T) w/ an LP os follows Variable X_T for $Pr_{\alpha}(T)$ and 2 for $L(T)$ Min 2 5.4 2
द
T $x_{\mathsf{T}}^{\mathsf{T}}$ Con solve in Poly-time
Usia ellipsoid + Mw4 so $\sum_{i=1}^{n} X_i + L_i(e) \le Z$ VeeE via ellipsoid + MWU so 2 S.t.

2 S.t.
 $\sum_{T} x_{T} = 1$
 $\sum_{T} x_{T} \cdot 1_{T}(e)$
 $\frac{1}{2} \sum_{T} (e)$ all algorithmic $X_T \ge 0$ \forall STs T Not Clear why I good solution; show by taking dual; see denvation lator Variable We VeeE and max Γ s.t. $\sum_{i}^{d} d_{\tau}(\mu, v) \ge \int \frac{\sum_{i}^{d} \mu_{e}}{\epsilon \epsilon E}$ (f 5) τ w_e $\forall e \in E$ and Γ

Max Γ s.t.
 $\sum_{i=1}^{n} d_{\tau}(u, v) \ge \int_{ee}^{v} \sum_{e \in E}^{v} w_e$ $\forall s_1 s \ne \emptyset$
 $\{\psi, v\} \in E$ $\left(\bigcup_{e \ne \emptyset}^{v} \sum_{e \in E}^{v} w_e\right)$ $\{\forall s_1 s \ne \emptyset\}$ v) w/ weights w w_p > 0 Ve Let p, 0 be optimal Primal, dual values WTS $P \leq \tilde{O}(\log n)$ By strong duality $P=D$ so wts $D\leq \widetilde{\mathcal{O}}(\log n)$ Consider any feasible dual solution (w, D) By PTE corollary , $P = D$ so wts $D \leq \tilde{O}(\log n)$
ble dual solution (v, D)
 \exists spaning tree T s.t. $\sum_{k=0}^{n} d_T(u,v) \leq \tilde{O}(\log n) \cdot \sum_{k=0}^{n} w_k$ Consider any feasible dual solution (w, D)
By PTE corollary, \exists spaning tree T s.t. $\sum d_{\tau}(u,v) \le \widetilde{O}(log n) \cdot \sum_{\zeta}^{\tau} w_{\zeta}$
By corresponding constraintedual LP for T, know $D \cdot \sum_{\zeta}^{\tau} w_{\zeta} \le \sum_{\zeta_k, k \in \mathcal{E}} d_{\$ By Corresponding Ca
So D ≤ Õ(log n) $\rm \tilde{O}($ logn) -conpetitive OR follows by 2 Claims

Derivation of Dug

Primal Variable X_T for $\frac{Pr(T)}{n}(T)$ and 2 for $L(T)$ Min 2 5.4 $max -2$ s.t. $\frac{\sum_{i}^{1} x_{i} + \sum_{i}^{2} (x_{i} + \sum_{i}^{2}) x_{i}}{\sum_{i}^{1} x_{i} + \sum_{i}^{2} (x_{i} + \sum_{i}^{2}) x_{i}}$
 $\frac{\sum_{i}^{1} x_{i} + \sum_{i}^{2} (x_{i} + \sum_{i}^{2}) x_{i}}{\sum_{i}^{2} x_{i} + \sum_{i}^{2} (x_{i} + \sum_{i}^{2}) x_{i}}$
 $\frac{\sum_{i}^{1} x_{i} + \sum_{i}^{2} (x_{i} + \sum_{i}^{2}) x_{i}}{\sum_{i}^{2} x_{i$ $-X_T \leq 0$ \forall 55 T (9_T) $X_T \ge 0$ \forall STs T

Dual

 Γ = β - α , Min or-B s.t. max Γ s.t. $y_r \ge 0$ but $\sum_{e} w_e = 1$ $-\sum_{e} \omega_{e} = -1$ (2) oh doesn't natter $\sum_{i}^{\mathsf{I}} w_{e} L_{\mathsf{T}}(e) \geq \int \int \int S(s) \mathsf{T}$ $\alpha - B - 9$ + $\sum_{1}^{1} w_{e} L_{1}(e) = 0 (X_{1})$ \forall ST₃ T \leftrightarrow PET eet w_e 30 Ve $\alpha_{1}B, \gamma \ge 0$ But $\overline{C_1^1} \omega_e L_T(e) = \sum_i \omega_e \sum_i \mathbb{1}(f_{u,v} + \delta(T \xi e)) = \sum_i \sum_i \omega_e = \sum_i d_T(x,v)$
 $\overline{C_1^1} \omega_e = \sum_i d_T(x,v)$ Switch \overline{z} order: \overline{z} = \overline{z} So Final clual has variable we VeEE and I and is $max \space P \space s.t.$ max Γ s.t. $\sum_{\{u,v\}\in E} d_{\mathsf{T}}(u,v) \geq \int \frac{1}{c_{\epsilon}} \omega_{\epsilon}$ Σ_{1}^{1} w_{e} = 1 VST_sT $\sum d_{T}(u,v) \ge \int_{V} v sT_{s}T$ w_e 20 $VeeE$ FUNZEE w_e 20 $VeeE$ ω same Γ

1 (15) - Competitiveness of Deterministic Oblivious Routing a deterministic algorithm is oblivious if vs, tev a swt path P s.t. $P_p = \{P_{st}: p(s,t)=1\}$ **Notice** Consider the following graph $\begin{picture}(180,10) \put(10,10){\line(1,0){100}} \put(10,10$ $\left(\begin{array}{cc} \uparrow & \uparrow \\ \uparrow & \uparrow \\ \uparrow & \uparrow \end{array}\right)$ Complete *<u>Sipartite</u>* graphs Fix the deterministic oblivious routing algorithm and let Pst be its snot lath Let $P_i := P_{s,t}$ For $e \in M$, let $P_e := \{P_i : e \in P_i\}$ and let $D_e(s,t) := \begin{cases} 1 & \text{if } s_i = s_i \text{ if } e \in P_i \\ 0 & o/w \end{cases}$ be routed denoted So ve have $Con(P_{D_{\alpha}}) \geq |P_{\alpha}|$ By averaging, $\exists \tilde{e}$ s.t. $|\vartheta_{\tilde{e}}| \ge \Omega(\sqrt{n})$ For sinplicity suppose $|\vartheta_{\varepsilon}| = \Theta(\sqrt{n})$ (if not, just drop pails from ϑ_{ε}) δ $con(\delta_{p_{s}}) \geq \Lambda(\delta_{n})$ OTOH V D that only send from S to T and ξ^{\dagger} $D(u,v) \leq O(\sqrt{n})$ $\exists \int_{D}$ routing D w/ (o. $(\varphi_{D}) = O(1)$ Thus, the algorithm is $\Omega(\mathbb{R})$ -conventive