
Today
- sparsest cut

- Reduction to H-spargest cut

- Olloga) -approximation for H-sparsest cut via Bourgain + cut core

- Expanders d,(X,Y)

Recall o

Given X
, yeR define d

,
(x, y) : = [x-4 :/

Eco

Bourgain's Theorem : given any point Metric (V,
G)

,
I (poly-time computable) embedding +

/ distortion Olloga) Of (VG) into (V , d) forG ROClog
11 Correspondance Between Metrics and Vectors

d(V,,V)

is (f) (i) ER(d(VVs)

(U,G) is an e
,

metric if it embeds isometrically into (V
, d) for VER for some

0 .

· ·
(v

, d) (v, d .)
(Vd,) is a cut metric for S&V Sit.

d (n,v) = GOurESor
US

(8)
Let e, (u)[R) be all e

,
metrics or V and let Cut(V) ]R be all cut metrics of V

The convex core of 0R is Core() :=End:0 v

#
Theorem: l

, (v) = Core ((ut(v) -V .

+el embedding
Also

, given def
, (v)car poly-time compute diecut(v)

,
0

. R Vi Site d= Fid.



Sparsest Cut

Given corrected graph G= (VE)

The volume of SEV is Vol(s) : = [dey (u)
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#e conductance of Sev is 9makevacasparsest cut Problem : Find SEV Minimizing P(s)
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sparsest Cut is NP-Gard

H-Sparsest Cut w : E + R= 0

Also give complete edge-weighted graph H = (V, EH
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The H-conductance of SEV is 9H(s:=
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Theorem : - Poly-time Olloga) - approximation for H-sparsest cut

corollary:- Poly-time O(loge)- approximation for sparsest cut
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H-sparsest Cut via Cut Metrics

Variable d(uv) for each uvEv ; let d(e) : = d(u,v) for e = quir
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be optimal of (i) above and 0. be objective of (i)
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Proof of Theorem
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To see approximation guarantee:
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& - expander for short

Expanders ↑
6= (V, E) is a p-edge-expander if 9(5)29 forenly SCV

Eng . · ·
① 14 is an(1) - expander ⑧ Above is a 0(t) - expander
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& vertices

Among most well-studied graph classes in TCS
. Why?

Useful for impossibility results deg(u) = 30v

&

Fact
:

Fro
,

5 an vo-code 3-regular (1) - expander

- sparse graphs that are as corrected as 1 j
Shows :

- 180 separation qualityef (4)

- Embeddings into l
, or le require enlloge distortion (tightness of Bourquid)

- "probabalistic tree embeddings" require &(log) distortion

- Mary others..

Useful for algorithms
A p-expander decomposition of G =CVE) is FLE Sit . that the Econnected components of (V, EIF) are -expanders

Fact : f M-edge graphs FRE ,
f a -expander decomposition FS.t. #FI0(P. loga)

Fact: poly-time &approximate sparsest cut -> Poly-time -expander decomposition F S .t . /Fl[0(0 ·P. 10g·e)


