<u>Today</u>

- -Bourgain intuition
-
- Expansion claim
- Proof of ^T
- Proof of Bourgain w/

An embedding of metic space
$$
(v,d)
$$
 into metric space (v,d') is a function $f:V\rightarrow V'$
\n f has distortion α if $d(u,v) \leq d'(f(a),f(v)) \leq \alpha \cdot d(u,v) \forall u,v \in V$
\nGiven metric (V, δ)
\n Tke (tused) haduy r ball (cduced at $X \in V$ is $B(x,r):=\{y \in V : \delta(x,y) \leq r\}$
\nThe open radius r ball (cdured at $X \in V$ is $\theta^0(x,r):=\{y \in V : \delta(x,y) \leq r\}$
\n $\frac{1}{\log X}$
\nThen Cauchy - Schwarz: $\sum_{i} |u,v_i| \leq \sqrt{\frac{r}{n}}u_i$ $\sqrt{\frac{r}{n}}v_i = ||ul|| \cdot ||v||$ $\forall u,v \in \mathbb{R}^n$
\n $-\frac{1}{\log X}$
\n $\frac{1}{\log X}$
\

Last time: (V,d) for $V \subseteq \mathbb{R}^n$ embeds into (V',d) for $V' \subseteq \mathbb{R}^k$ and R<<n $\frac{1}{2}$ all metrics are from subsets of \mathbb{R}^n w/ Euc. distance, e.g. shortest palls on graphs; see hw This time : Any Metric embeds into (Vd) for VER / low distortion Bourgain's Theorem : given anypoint Metric (V, G), I (poly-time computable) embedding ⁺ y, distortion $O(log n)$ \overrightarrow{OP} (V₃ \overrightarrow{S}) into (\widetilde{V}, d) for $\widetilde{V} \subseteq R^{O(log^2 n)}$ Euc. distance car reduce to Construction of f: O(logv) w/JL <mark>Intuition: </mark>estimate distances by difference in distances to "way point" sets Distances

For $S \subseteq V$, $X \in V$, let $S(x) := \arg\min_{y \in S} \delta(x,y)$ and $\delta(x, S) := \delta(x, S(x))$

sets
 $\frac{\text{Cla}; m}{\text{true}} : \delta(x, S) \le \delta(x, y) + \delta(y, S)$ $\forall x, y \in V$, $S \subseteq V$ (set triangle inequality)
 $\frac{\text{Ia}}{\text{true}} \delta(x, S) = \delta(x, S(x)) \le \delta(x, S(y)) \le \delta(x, y) + \delta(y,$ 5) ↑ triangle inequality |
| will let \widetilde{X} := F(x) <mark>First Altempt:</mark> Fix Some SSV_J Xis(os)) (5) Distances never go up: $d(\tilde{X}, \tilde{Y}) = |\delta(x, y) - \delta(y, y)| \leq \delta(x, y)$ $\forall x, y \in V$ Set Triangle inequality $\overline{\mathbf{D}}$ islances can go down: e.g. when $\delta(\mathsf{x},\mathsf{S})$ = $\delta(\mathsf{y},\mathsf{S})$ \forall $\mathsf{x},\mathsf{y} \in \mathsf{V}$ \sqrt{s} . <mark>}</mark> 6 When distances don't go down Much \overrightarrow{B} $\frac{1}{2}$ rate of $\frac{1}{2}$ rate $\frac{1}{2}$ trivial if transl if
Only care $L Q$
about $\sum_{y} Q$, $B := B(X, \frac{S(x, y)}{2})$, $G = (y, \frac{S(x, y)}{4})$ X, Y L C + $B := B(X, \frac{-(9)}{2})$, $G = (9, 9)$
"
"
dream" If SEG and SEB then $d(\tilde{x}, \tilde{y}) = |S(x, s) - S(y, s)| \ge \frac{S(x, y)}{4}$ Suppose $|B|\approx|G|$ and say X', y' is <u>like</u> X, y if $|B(x', \underline{i(x_1)})| \approx |B(y', \underline{i(x_1)})| \approx |B|$ If $S \leftarrow v$ w/ Pr $\frac{1}{181}$ then $\forall x,y'$ like x,y dream happens w/ $\pi(v)$ pot.

Problem: need distances fo always not increase_jnot*inst w/ QL*(i) probality Solution: $\Theta(\log n)$ repetitions Second Attempt: Let $S_i \leftarrow v$ w Pr $\frac{1}{18}$ independently for $i \in [O(\log n)]$ Let $\widetilde{X} = (\delta(x, s_1), \delta(x, z), ...)$ v w/ Pr $\overline{10}$ independently for
 $(\delta(x, s_1), \delta(x, z), ...)$
 $\overline{S} = (\delta(x, s_1), \delta(x, s_2), \delta(x, s_1))$
 $\overline{Y} = (\delta(y, s_1), \delta(y, s_2), \delta(y, s_1))$ \tilde{y} = ($\delta(y, 5, 0)$, $\delta(y, 5, 0)$, $\delta(y, 5, 0)$)

 w h) any Pair like x,y actieves dream for $\Theta(\log n)$ S: ↳ distances don't decrease for these pairs

Problem: need f to work for all pairs not just those like X,y (bulls of Size $\pi(8)$) solution : try all possible values of ¹⁸¹ as powers of e

Final	Atlenpl:	Let $C \ge 1$ be a large constant chosen later
For $j \in [log n]$ ($\lfloor 8 \rfloor$ Possibilites)		
For $j \in [C \cdot log n]$ (<i>repetitions</i>)		
S_{ij} contains each $V \in V$ independently $W / Pr \frac{1}{2}$		
$\widetilde{X}_{ij} = \delta(X, S_{ij})$ so $\widetilde{X} \in \mathbb{R}$		
On \widetilde{S}_{ii}		
\widetilde{S}_{ii}		
\widetilde{S}_{ii}		
\widetilde{S}_{ii}		
\widetilde{S}_{ii}		
\widetilde{S}_{ii}		
\widetilde{S}_{ii}		
\widetilde{S}_{ii}		
\widetilde{S}_{ii}		
\widetilde{S}_{ii}		

"

$$
\frac{\text{Expansion. } \text{Cla;}\, n:}{\sum_{i, i} |\tilde{X}_{i, i} - \tilde{Y}_{i, i}|} \geq \frac{c}{\varphi_0} \cdot \log n \cdot \delta(x, y) \qquad \forall x, y \text{ except } \omega / \text{ } \text{Pr} \leq \frac{1}{n}
$$

Skipt come back ↓

Proof of Bourgain Using Expansion Claim
\nWTS
$$
\delta(x,y) \le d(\tilde{x}, \tilde{y}) \le O(log^{2}n) \cdot \delta(x,y)
$$

\nObserve $\delta(x, S_{i,j}) - \delta(y, S_{i,j}) \le \delta(x,y)$ $\forall i,j$ b/c $\delta(x, S_{i,j}) \le \delta(x,y) + \delta(y, S_{i,j})$
\nSo $d(\tilde{\lambda}, \tilde{y}) = \sqrt{\sum_{i,j} (\tilde{\lambda}_{i,j} - \tilde{y}_{i,j})^2} = \sqrt{\sum_{i,j} (\delta(x, S_{i,j}) - \delta(y, S_{i,j}))^2} \le \sqrt{\sum_{i,j} (\delta(x,y))^2} = c \cdot log^{2}n \cdot \delta(x,y)$
\nOTOH $d(\tilde{x}, \tilde{y}) = \frac{||\tilde{x} - \tilde{y}|| \cdot ||\tilde{x}||}{||\tilde{x}|| ||\tilde{y}||}$
\n $\Rightarrow \frac{\epsilon R^{C_{log}n}}{||\tilde{x}|| ||\tilde{x}||} = \frac{\sum_{i,j} |\tilde{x}_{i,j} - \tilde{y}_{i,j}|}{\sqrt{C} \cdot log n} = \frac{\epsilon R^{C_{log}n}}{\sqrt{C} \cdot log n} = \frac{\epsilon R^{C_{log$

Bourgais follows by probabalistic Method

of of Expansion. Claim		
Fix X,y y \in V		
Let $r_3 := min + sA \cdot B(x,r) , B(x,r) \geq 2^k$		
Let $t := min + sA \cdot 2r_1 \geq 5(x,y)$		
For simplicity, will assume	$2r_1 = \delta(x,y)$	
So $\frac{\frac{5(x,y)}{2} \leq r_1}{2} I $		
Also for $i \leq t$ Since $r_{j-i} \leq r_j$ have $\frac{r_1 + r_{j-1}}{2} \leq 2r_j \leq 6(x,y)$ [2]		
Also, for every	$j \leq t$	$\frac{ \beta(x,r_j) }{2} \cdot 0 + \frac{ \beta(y,r_j) }{2} \cdot 2^j$ [3]
for every	$j \leq t$	$\frac{ \beta(x,r_j) }{2} \cdot 0 + \frac{ \beta(y,r_j) }{2} \cdot 2^j$ [4]
To observe, u assumption: Redefine $r_i := \frac{5(x,y)}{2}$ let \tilde{r}_i be old r_i		
(a), (d) trivial 5:ill have $r_{t-1} \leq r_t$ sice $0/\omega$ $2r_{t-1} \geq 2r_t \geq 5(x,y)$ count actually t choice for $r_t + r_{t-1} \leq 2r_t = 5(x,y) \rightarrow 9$ gives (6)		
Also $r_t \leq \tilde{r}_t$ by definition \rightarrow gives (c)		

For Find
$$
j \le t_0
$$
, have $\frac{z_1}{2} |\tilde{X}_{1,j} - \tilde{Y}_{1,j}| \ge \frac{z_1}{2} \log_{10} (r_1 - r_{3-1})$ by $Pr \ge 1 - \frac{1}{8}$
\nWLOG $suppose$ $|\theta(x,y)| < 2^{\frac{1}{2}}$ (3)
\nLet $\theta_0 = \theta'(x_1y_0) \rightarrow \text{Word } conv(y_0)$
\nLet $\theta_0 = \theta'(x_1y_0) \rightarrow \text{Word } conv(y_0)$
\nLet $\theta_1 := \theta_0 \text{ for } y_0 \neq 0$ and $\theta_0 \text{ if } y_0 = \emptyset$
\nIf θ_0 $\theta(x_0) = \emptyset$ then $\tilde{X}_{1,j} = \emptyset$ (x_0, x_{1,j}) $\ge r_0$
\nIf θ_0 $\theta(x_0) = \emptyset$ and θ_0 $\theta(x_0) = \emptyset$
\nIf θ_0 $\theta(x_0) = \emptyset$ and θ_0 $\theta(x_0) = \emptyset$
\nIf θ_0 $\theta(x_0) = \emptyset$ and θ_0 $\theta(x_0) = \emptyset$
\nIf θ_0 $\theta(x_0) = \emptyset$ and θ_0 $\theta(x_0) = \emptyset$
\n $\theta(x_0) = \theta_0 \text{ and } \theta_0$ and θ_0 $\theta(x_0) = \emptyset$
\n $\theta(x_0) = \emptyset$

 \mathbf{g}_j