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1) TheSet cover Problem

3) Solving (1) Using LP framework randomization

3) Solve (1) Using Primal-dual
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The LP Framework

1) Express Problem as as IP

Optimal T9) Get a n8FS solution X to LP relaxation (must assume /exists)

3) Use X to solve Problem (sometimes Only approximately
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The Set cover Problem

&GiveVersesetwo
SEAW

"A covers U
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Let OPTI=WAS

Problem : Set cover is NP-hard

Still Possible : Find A38 covering U Sit . W(A) dopt for small tell is

randomized
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Today : Use LP-framework to do this

Theorem 1 : I a radomed Poly(a) - time Olloga)- approximation for set cover

↳must be e(log) assuming PEND

Theorem 2 : J a poly(, m) -time f-approximation for set cover

where f=max/SE:



SetCover IP/LP
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Randomized Rounding :
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Proof ofThm I wi claim

(i) Consider Set cover IP Or> w(X) If optical

(2) Compute Optimal XElss so w(X) Epp

(3) Ther if corresponds to a solution AGB for set cover sit,

w(A) = w(X) - 0(10y +) · w(x)= 0(lon) · Optip <O(loga) · Opt
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Set Cover Dual

Variable X
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Min w(x) Sit. ⑭ MaxI sta

21 OvE [Y1 [W(r) USEB

VES

Xs 30 VSEB Y ? 0 -Vel

A "covery" LP A "Packing"LP

-> see later for a derivation of dual
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Primal -Dual Approach :

grow feasible dual sole , + use dual sole ,
to construct similar cost primal

↳ Note: don't always have to solve (P

Claim : Car Poly(am) time compute a set cover solution AEB and

a feasible dual solution y Soto W(A)[FZ
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Proof ofClaim

Given dual soli . Y
, say SEE is tight if Zign =w(s)
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Notice at start of iteration not covered by A but v is covered at end

-> Alg is Poly(om) time

-> Also A is a set cover

y is a feasible dual solution by construction
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Deriving dual of S) LP

Min w(x) Sit. Max <-W,X) Sit.
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