Today 1) The Set Cover Problem 2) Solving (1) using LP framework + randomization 3) Solve (1) Using Primal-dual Recall <u>Clain:</u> If $k = \begin{cases} x: \begin{cases} 4x \leq 6 \\ x \geq 0 \end{cases} \end{cases}$ then K has a BFS Further, give $C = w / 0$ $T := max_{y \in k}$ $C = max_{x \in k}$ then \exists a BFS 2 s.t. $\langle \zeta, z \rangle = 0$ PT EFFiciently Efficielly
Conputable The LP Framework 1) Express Problem as as IP overnmel
2) Get a_n81 Problem as an IP

ABFS solution X to LP relaxation of (must assume leasys) $3)$ Use X to Solve Problem (sometimes only approximately) The Concentration Framework To Show fact $(*)$ α) show (*) true if all RVs near E $6)$ Concentration: each RV at E (t logn) w/ good probability C) Unio, boad: a II RVs Cherroff Bound Let $X{i_1}X_{i_2,\dots,i_N}X_{i_n}$ be independent RVs s.t. $X_i = \begin{cases} i & \text{with } i \\ 0 & \text{with } i \end{cases}$ Let $X := \sum_{i=1}^{n} X_i$, $A := \mathbb{E}[X]$ A_{nd} \forall $\delta \in (0,1)$ $Pr(X \leq (1\cdot \delta) \cdot M) \leq e\chi P(-\delta^{2}M/x)$ Dual LP 1 LP
min <-4x) Max <-1,2> Max $\langle c, x \rangle$ s.t. $Ax \le b$ Min $\langle b, a \rangle$ s.t. $A^{T} \lambda = c^{T}$ λ 20 $(\text{Prin }a)$ (Dual) \overrightarrow{p} 's \overrightarrow{r} , \overrightarrow{p} ' = -(Prinal) ($D' \le P$

Weak Duality: Always have $P \le D$ if P , D are primal, dual also O P H mal values

The Set Cover Problem Given universe u_3 sets $0 \le 2^n$, set weight $w:\theta \to \mathbb{R}_{\ge 0}$ $m:=|\theta|$ Want: $A \subseteq B$ s.t. $US = U$ Minimizing $w(A) := \sum_{i=1}^{n} w(s)$ $\frac{1}{4}$ (over 11" $\boldsymbol{\theta}$ A u Let OPT:= $\lim_{A: U \to U} w(A)$ Problem: Set cover is NP-hard Still Possible: Find $A \subseteq B$ Covering U S.t. $w(A) \leq \alpha \cdot o$ PT for small $a > 1$ in P L) Given a family of Minitization problems IT w/objective w, a algorithm $\sqrt[4]{$: IT -> Solutions is an α -approximation if $\mathbb{E}[\omega(\mathcal{K}(P))] \leq \alpha \cdot OPT(P)$ \forall PETT Today: Use LP-fromework to do this Theorem 1: 1 a randomzed poly(n,n)-time O(log n)-approximation for set cover Lancest be $\Omega(log_{2})$ assuming $P \neq NP$ Theorem 2: \exists a $\mathsf{Poly}(n,m)-\mathsf{time}$ f - approximation for set cover Where $f = max_{\forall \epsilon \mathbf{u}} |\{\xi \epsilon \beta : \nu \epsilon \hat{\mathbf{s}}\}|$

Set Cover IP/LP Variable X_s $\forall s \in B$ so $x \in R^m$, let $w(x) := \sum_{s \in B} w(s) \cdot x_{s}$, $\bigcirc PT_{LP} := \max_{x \in k_{cr}} \langle w, x \rangle$ LP MIN $w(x)$ S.t. $IP|M|n \le w(X)$ s.t. τ ⁺ x₅ 21 W ve U = K_{SC}

Sives

X₅ E E 0,1 W s E B $\int \frac{1}{\sqrt{2}} x_5$ 21 V vell \Rightarrow X_{5} \in $\{0,1\}$ \forall 568 X_s 20 Randonized Rounding: (3) today $X \in K_{SC}$ rendomization $X \in K_{SC} \cap Z^{n}$ $Cl(a \cap n: g$ iven $X \in K_{SC_1}$ Can Polylm.) the conpute a tandom \tilde{X} 5.4. $\widetilde{X} \in K_{\leqslant c} \cap \mathbb{Z}^n$ $w \nmid r \geqslant 1-\frac{1}{n}$ and $E[w(\tilde{x})] \leq O(\log r)$. $w(x)$ $Proof$ of Thm $|v|$ Claim b/c $w(x) \in \mathbb{IP}$ optinal (1) Consider Set Cover IP (2) Compute Optimal $X \in K_{SC}$ so $w(X) \subseteq OPT$ (3) Then \tilde{w} corresponds to a solution ASB for set cover sit. $w(A) = w(\tilde{X}) \le O(log n) \cdot w(X) = O(log n) \cdot OPT_{LP} \le O(log n) \cdot OPT$ Y roof of Cl aim Let $\widetilde{X}_{s} := \begin{cases} 1 & w \neq 0 \\ 0 & o/w \end{cases}$ min $(\text{10-lan} \cdot X_{s,1})$ \widetilde{X} frivially Poly (n,n) fime computable $\mathbb{E} \left[\mathbb{L} \omega(\tilde{X}) \right] = \sum_{\zeta \in R} \mathbb{E} \left[\mathbb{L} \omega(\tilde{X}_{s}) \right] = |0 \cdot | n \cdot \sum_{\zeta \in R} X_{\zeta} \cdot \omega(\zeta) = O(\log n) \cdot \omega(x)$ $\widetilde{X} \in K_{SC} \cap \mathbb{Z}^n$ by $\{r \ge 1 - \frac{1}{n} \to Note \ \ \widetilde{X} \in \mathbb{Z}^n \text{ and } \ \widetilde{X}_5 \in \{0,1\} \ \forall s \in \mathbb{R} \text{ trivially}$ (a) Fix vell, let $\widetilde{X}_{v} := \sum_{s \in B : v \in S} \widetilde{X}_{s}$ so $E[\widetilde{X}_{v}] \ge |b \cdot \ln n$ (6) By Chernoff, $Pr(\tilde{X}_v \leq 8 \cdot \ln n) \leq Pr(\tilde{X}_v \leq \frac{1}{2} \cdot E[\tilde{X}_v]) \leq exp(-|6 \cdot \ln n/\delta) = \frac{1}{n^2}$ (c) By Union bound $\widetilde{X}_v \ge 1$ VVEU except w' Pr $\le \frac{1}{n}$ so $\widetilde{X}_v \ge 1$ VVEU except w' Pr $\le \frac{1}{n}$ Set Cover Dual Vonable by foreach vell so yes Variable X_{s} $\forall s \in B$ so $x \in R^{m}$ $\frac{p_{val}}{q}$ Max $\frac{p_{y}}{q_{u}}$ s.t. LP/Mn $w(x)$ s.t. $\sum_{\zeta: v \in S} x_{\zeta} \ge 1$ \forall veU \longleftrightarrow Σ_i y_v $\leq w(v)$ vsed

ves

y_v ≥ 0 vell $X_{5} \ge 0$ Vs ϵ B A "Packing" LP A "Covering" LP \rightarrow See later for a derivation of dual Given $A \in \mathbb{R}_{\geq 0}^{n \times n}$, be $\mathbb{R}_{\geq 0}^{n}$, ce $\mathbb{R}_{\geq 0}^{n}$ min (c_1x) s.t. $Ax \ge b_1x \ge 0$ is a <u>covering LP</u> duals
max (c_1y) s.t. $Ay \le b_1y \ge 0$ is a <u>Packing LP</u> eachother eachoine:
Fw/ different Ajb,C)

Primal -Dual Approach:

grow fortible dural soln. + use dual soln, to construct similar cost princl

L) Note: don't always have to solve LP

 $Claim: Can Poly(n,m)$ time compute a set cown solution $A \subseteq B$ and α feasible dual solution y S.t. $w(A) \leq f \cdot \zeta$ 'sv

Proof of thm. 2 w/ Claim

A from claim is
$$
\text{Poly}(n,n)
$$
 computable
\n $\text{PSP} \leftrightarrow \text{weak dual:}$
\nHave $\text{W}(A) \leq f$. $\sum_{V \in U}^{L} y_{V} \leq f \cdot OPT_{LP} \leq f \cdot OPT$ so an f -approximation

Proof of Claim			
Given, dual Soln.	Y, say	SeB is <u>tight</u> if	$\sum y_y = w(5)$
P-D Alg.			
$y \in 0$			
$A \in \emptyset$			
While	3 v EU not covered by A		
Increase y_y Unit:1 3 SeB (overing V that is <u>truth</u> .)			
Add this 5 to B			
Returns A, Y			

Notice at stort of iteration V not coverd by A but v is covered at end - > Alg is Poly(om) time \rightarrow Also A is a set cover y is a feasible dual solution by construction
w(A) ≤ f·∑^yv VEU If $S \in A$, then $\sum_{v \in S} y_v = w(S)$ by construction Switch Zonder Switch order ↓ $\leq f \cdot \zeta^{y}$
 \vee Vey
 $\top f$ SEA, then $\sum_{v \in S} y_v = w(S)$ by construction
 \sim So $w(A) = \sum_{s \in A} w(s) = \sum_{s \in A} \sum_{y} y_v = \sum_{s} \sum_{i} y_v = \sum_{s \in B} \sum_{y \in S} y_v = \sum_{s \in B} \sum_{s \in B} y_s$
 $\leq f \cdot \sum_{v \in B} y_v$
 $= \sum_{v \in B} \sum_{v \in B} y_v = \sum_{v \in B} \$

<u>Deriving dual of SC LP</u>

Min	w(x)	s.t.	max	$\langle -w,x \rangle$	s.t.			
$\frac{7!}{x_5} \times 1$	Y v < U	\Rightarrow	$-\frac{7!}{x_5} \times 1$	Y v < U	$\langle 9_v \rangle$			
Primal	Sives	χ ₅	≥ 0	V5 < 8	χ ₅	≤ 0	V5 < 8	λ ₅

$$
\begin{array}{lll}\n\mathsf{Min} & -\sum_{v \in S} y_v & S \cdot t. & \mathsf{max} & \sum_{v \in S} \ y_v & S \cdot t. \\
\mathsf{Dual} & -\sum_{v \in S} y_v - \lambda_S & = -w(S) & \forall s \in \mathcal{B} & \implies & \sum_{v \in S} y_v \leq w(s) & \forall s \in \mathcal{B} \\
& \forall s & \forall s
$$