
Today

1) Max bipartite matching

9) Integer Programming + 14 Integrality

3) The LP Framework

4) Solving (1) w/ (3)
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MaxBipartite Matching
Given Gipartite graph G= (V,E)

,
find a matching MGE Maximizing IMI
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An Equivalent Problem

Let E = Ge, er, ..., en3
for XER

,
rotate X

.
as Xe
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Call this
Find XER" MaximizingExe ti
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IPM
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1-1 correspondance between these X and matchings

X- Matching Geixe = 13

M- X where Xe =Seem
Not a linear program 61c XeE30, 13 not a lear constraint

EPm is an "integer" program



Integer Programming

suppose given 1 = ExAx163 and Cer

MX &

let Opp() : =
Max (X) and OPTIp() : = mux(4X)

XE(1z
X

Car report (M=0 or OPTIp(c) =e)

Give C
,
find XE112 Sit. (SX)= OPTpk)n is called an integer program

Bad news : integer programming is NP-Gard f(or report ...)

Given C
,
find XE1) Sit . <X)= OPTp() his called the 29 relaxation of

Good news : LPEP -> will see is later classes

Question then is how well the 19 relaxation approxs the IP
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(not integral) Cirtegral)

1) is integral iff all BFS of 15 are integral (XER is integral if XEZ)

Given a set of polyhedra It and costs a the integrality gap is

Max
OPTp(c

1 E opt
=p(c)CEG

E.g. C= 1 andIt is all polyhedra corresponding to instances of Max matching

OPTp()2OPTEp(1) VC so 1611

Note : if all best integral ther IG =/



The LP Framework

1) Express Problem as as IP

2) Get a BFS solution X to 10 relaxationf cust assume /exists)

3) Use X to solve Problem (sometimes Only approximately
↳) Simplest (3) is wher It is integral 6/CX is a solution to IP and so to Problem

Back to Matching

Let Im := EXER"u Due t3
So IPM > Find Xelul &" Sit. <1,X)= IPpp(f)

W/ LP relaxation find XEKm Sit . <1,X= Hop (1)

Claim :In is integral

↓ gives
Always exists 61

Algorithm for Matching ILPOPT fo

(1Consider FPM ↑starin

14) [Le+ yelade a BFS Sit . <1 , Y) = Max <1,x)but will see a poly-tiea

X(1

(3) [Return matching corresponding to y



Proof that I'm is integral

Let y be a BFS of Im

Say etE is Fractional if Yet(0, 1)
,
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(LWR , f) either has a cycle or a path (4, ..., v) where a and veot right

start at a fractional edge and follow edges out of tight endpoints
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Bonus : Can solve Max weight bipartite matching in same way

-
Given Gipartite graph G= (LURE) WEER find a matching MSE Maximisionwe
same argument, just replace 1 ww

Other Common Integral LPs

- Flow (00 (w) -> generalized by th Matrix +network Matrix LPs

- Cut (00 (w)

- MST -> generalized by Matroid L,

- General graph matching (0- (w)
- Arborescence (directed MST) -> generalized by matroid intersection LPs

- Matroid

- Matroid Intersection

-


