Reall

 $X \in K$ is a <u>basic</u> feasible solution (BFS) if f rank(Tight(X)) = n

<u>Corollory</u>: Given $X \in K = \{x: Ax \in b\}$ w/ T:=Tidt(x) and $w \in K \in (A_T)$ $\exists \delta > 0 \quad s, t, \quad X \neq s \cdot w \leq K$

<u>Clain</u>: If y is a BFS of $\{x: Ax \le l\}$ then it is the unique soln, to $Bx = b_{B}$ $\forall B \subseteq Tight(y)$ a basis of \mathbb{R}^{n}

$$\frac{LP_{S}}{K} = \sum_{i=1}^{N} \sum$$

$$\frac{\operatorname{Indro} \operatorname{to} (\operatorname{Goutex} \operatorname{Goutetry}_{I})}{\operatorname{Goute}_{I} (\operatorname{Indro}_{I}) \operatorname{Indro}_{I} (\operatorname{Indro}_{I}), \operatorname{Indro}_{I})} (\operatorname{Indro}_{I}) (\operatorname{Indro}_{I}) (\operatorname{Indro}_{I}), \operatorname{Indro}_{I}) (\operatorname{Indro}_{I}) (\operatorname{Indro}_{I}) (\operatorname{Indro}_{I}), \operatorname{Indro}_{I}) (\operatorname{Indro}_{I}) (\operatorname{Indro}_{I}) (\operatorname{Indro}_{I}) (\operatorname{Indro}_{I}), \operatorname{Indro}_{I}) (\operatorname{Indro}_{I}) (\operatorname{Ind$$

Fact: Polyhedron $K = \frac{2}{3}Ax \le 63$ is convex Suppose u, v EK and PETO, 1] $A(P \cdot u + (i - P) \cdot v) = P A(u) + (i - P) \cdot A(v) \leq P \cdot b + (i - P) \cdot b \leq b$ So P. u +(1-P) V EK SO [U,V] CK SO K CONVEX Fuct: XEK= {Ax < b} is a BFS iff it is a vortex iff it is on extreme point BFS -> vertex Let XEK be a BTS and fix basis B of Tight(x); X is unique point in K tight for B (birchin) Let $w := \overline{\zeta} a_i \longrightarrow Since \ \theta \subseteq Tight(x)$, have $\langle x, w \rangle = \overline{\zeta} b_i$ OTOH for any yEK s.t. y # X, have (y, w) < Z'b; (since y not tight for all constraints <a, y) st;, extreme point -> BFS By contrapositive -> Suppose X not a BFS So rank(Tight(X)) < n so I w = 0 elker(Tighta); But then by conditory have $\exists \delta > 0$ s.t. $X \stackrel{!}{=} \delta \cdot w \subseteq K$ so $X = \frac{1}{2} (x + \delta \cdot w) + \frac{1}{2} (x - \delta \cdot w)$ So X not an extreme Point voter -) extreme point By contrapositive -) Suppose X not an extreme point so X=p·u+(1-p)v for Some 16(0,1), UZV. YVEK For a given we \mathbb{R}^n have $\langle w, x \rangle = P \langle w, u \rangle + (1-P) \langle w, v \rangle$ L) Follows that either $\langle w, u \rangle \geq \langle w, x \rangle$ or $\langle w, v \rangle \geq \langle w, x \rangle$ so x not a value Surprisingly hand 1 to show Fact: If K is a Polytope w/ vertices V then K = Conv(K)

Summary

The Polyhedron $K = \{X: Ax \le b\}$ is the intersection of M halfspaces and is Convex XEK is a BFS iff vertex iff extreme point If K is a Polytope then it is the convex hull of its BFSs/Versices/Extreme points