Today

7 Proof Strategics - Guessing - Charging - Potentialing (rughe) - Doubling - Halving - Averaging [- (Token) Reatranging (mayle)

<u>Analysis</u>

Art travels 5 3X

Two	Other	erspectives on Analysis	
	Charging	to upper bound $y \leq z$, create z dollars	
		Pay for each part of y u/ 2 dollars	
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
		So star w/ 2x+4x ² dollars	lorging"
		Each time ant goes insiti, reduce # dollarge; by	<i>v</i>
		< x iterations and $\$ at each i reduced by $\leq 2/$	Heraba
		so never run out of \$	
Skippe	4	-) Distance travelled 5 total # dollars 5 2x+4x ²	
Ň	Potential i	to upper bound y create a "potential function"	
		φ s.t. initially $q=0$, $q \leq B$ always and as y increases	ø
		so does P	
		$\varphi := \xi \varphi;$	
		$\varphi \leq x$ since if $\varphi \geq x$, ant found cookie	
		Each iteration 9 increases by 21 and trav	rel 54x
		so travel $\leq 4x^2$	

Strategy for d-Mice Trees
Until @ Cookie
Go to arbitrony Child
Poulding Analysis
houlds at level 0 in 1
nodes at level 1 is d
But # nodes
$$\leq n$$

So $d^{i} \leq n$ so $i \leq \log_{d} n$
So $h_{i} \leq n_{i} \leq \log_{d} n$
So $h_{i} \leq n_{i} < 1 \leq \log_{d} n$
I.e. a d-nice tree has depth $\leq \log_{d} n$
I.e. a d-nice tree has depth $\leq \log_{d} n$
I.e. a d-nice tree has depth $\leq \log_{d} n$
I.e. a d-nice tree has depth $\leq \log_{d} n$
I.e. $\log_{d} n$
I.e. $2\log_{d} n$
I.e. $\log_{d} n$
I.e. \log

