An Algorithmist's Toolkit

CSCI 2952T Fall 2024 Brown University

D Ellis Hershkowitz (Ellis)

Class Overview

Probability

• • •

Alc (C Ge

Linear Algebra	
gorithms	Graph Theory
Convex) eometry	

Class Overview

Main Goal: learn mathematical tools of modern algorithms research

Class Overview Course Goals

- Jumpstart your research in algorithms
- Give you the algorithms toolkit to use in your research

even if you're not a theory student

• Enable you to read algorithms papers / attend talks at Primarily: STOC/FOCS/SODA/SOSA/ICALP/ESA/ITCS

Secondarily: EC/PODC/DISC/SPAA/COLT/NeurIPS+

Teach you cool math

Class Overview Disclaimers

• This is a theory class

entirely proof-based

• This is biased towards my interests / research

there are some notably absent topics

• This is a random walk

breadth over depth (mostly)

Class Overview Prereqs

• Hard Requirements:

- ≥ 1 previous algorithms class (1570)
- Mathematical maturity
- **Soft Requirements;** some familiarity with:
 - Probability
 - Linear algebra
 - Complexity (basics of NP-completeness)
 - A bit of calculus

Ask Me If Unsure!

Topics Overview

Doing Theory is Hard

- The right tools make theory easier: 1. Basic Tools
 - 2. Randomized Algorithms
 - 3. Polyhedral Methods
 - 4. Geometric Methods
 - 5. Cuts and Flows
 - 6. Graph Sparsification
 - **Multiplicative Weights** 7.

Topics Overview Basic Tools

Squinting at symbols makes them easier to think about

Topics Overview Basic Tools

 $100 \cdot \log^3 n \cdot \sqrt{n} + \frac{\log^{12} n}{\log \log n} \cdot \exp(10 \cdot \log n)$

How to Push Symbols Around Like a Pro

$n^{10+o(1)}$

Asymptotics

 $O(\log n)$

Inequalities

Topics Overview Randomized Algorithm

Making **random** decisions makes decisions easier

Topics Overview Randomized Algorithm

Topics Overview Randomized Algorithm

Tools for Understanding Why This Works

Topics Overview Polyhedral Methods

Making a problem **continuous** makes it easier

Topics Overview Polyhedral Methods

Input Problem

How to Solve Problems by First Fractionally Solving Them

Fractional Solution

Solution

Topics Overview Geometry and Metric Embeddings

Simplifying the **geometry** of a problem makes it easier

Topics Overview Geometry and Metric Embeddings

 \mathbb{R}^{1000}

 \mathbb{R}^3

Topics Overview Geometry and Metric Embeddings

Tools for Reasoning About and Simplifying Metrics

Max **flow** = min **cut** makes a lot of problems easier

Max Flow

Max Flow

Max Flow

Min Cut

Max Flow

Min Cut

Strengthening and Generalizing Flow/Cut Machinery

Min Cut

Simplifying graph structure makes graph problems easier

graph G = (V, E)

simple representation H of some property of G

graph G = (V, E)

spanning tree H s.t. $d_G = d_H$

What's the $u \rightarrow v$ shortest path?

What's the $u \rightarrow v$ shortest path?

Methods for Sparsifying Graphs

Deferring to **experts** makes decisions easier

Buy or Sell?

You

Should buy

Buy or Sell?

You

Buy or Sell?

Over time perform \approx as well as best expert

Over time perform \approx as well as best expert

• Fast Algorithms (for very general problems) • Algorithms Under Uncertainty (online algorithms)

Class Logistics

Class Logistics Your Responsibilities and Grade Breakdown

- 6 homeworks
- 1 final
- Theory Seminar participation twice
- Class participation

(60% total, 10% each, one topic each) (25% total) (10%, 5% per seminar) (10%)

Class Logistics Grade Distribution

- Grades:
 - A (≥90%)
 - B (≥80%)
 - C (≥70%)
 - NC (<70%)
- May curve upward

Class Logistics Misc. Logistics (1/3)

- All other classes are board talks; 1 or 2 may be subbed
- Homeworks can be collaborative (up to 4)
- First homework out this week
- Final is take-home, not collaborative
- All assignments must be written in LaTex
- Submissions via Gradescope

Class Logistics Misc. Logistics (2/3)

- For each Theory Seminar: submit a short summary (~150) words) of what you learned / how it relates to anything in which you're interested
- Goal is for class to be maximally interactive so please, please, (please):
 - Ask questions if you're confused
 - Do your best to answer questions, even if unsure
- Course website:

https://dhershko.github.io/teaching/fall24Toolkit.html

Class Logistics Misc. Logistics (3/3)

- TAs:
 - Jay Sarva (UTA)
 - Richard Huang (grad TA)
- Office hours:
 - Jay: 4PM-6PM Tuesdays in CIT 227
 - Ellis: 1:30PM-2:30PM Wednesdays in CIT 507
 - Richard: 3PM-4PM Fridays in CIT 361

