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Computing Distances

(Transportation) Network

Some notion of distance
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Computing Distances

Graph G = (V, E)

dG(u, v) := min{ |P | : path P from u to v}
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Computing Distances

dG(u, v) := min{w(P): path P from u to v}

Graph G = (V, E, w)

w(P) := ∑
e∈P

w(e)
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Computing Distances

Data

Structure 50

How far from 

 to ?u v

A distance “API”
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Computing Distances

Tradeoff: space (of data structure) vs (response) time

50

How far from 

 to ?u v

A distance “API”
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Small but Slow

 and n := |V | m := |E |

Motivation: Distance Oracles

O(m) O(m)

Tradeoff: space (of data structure) vs (response) time

50

How far from 

 to ?u v

Input Graph

BFS
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Fast but Large
Motivation: Distance Oracles

O(n2)

O(1)

Tradeoff: space (of data structure) vs (response) time

Complete Graph with w = dG

 and n := |V | m := |E |

50

How far from 

 to ?u v
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Plotting Tradeoffs

 and n := |V | m := |E |

Motivation: Distance Oracles

Space

Time

Distortion

O(n) O(m)

O(m)

O(n)

complete graph

input graph

O(log n)

O(n2)

O(1)
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Plotting Tradeoffs

 and n := |V | m := |E |

Motivation: Distance Oracles

Space

Time

Distortion

O(n) O(m)

O(m)

O(n)

complete graph

input graph

spanner

O(log n)

O(n2)

O(1)
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Definition (spanner): given graph  and , 

a -spanner  is a subgraph of  satisfying

G = (V, E) t ≥ 1
t H G

dH(u, v)   ≤ t⋅ dG(u, v) ∀u, v ∈ V

Spanners
dG(u, v) ≤ dH(u, v)Observe: ∀u, v ∈ V

spanner  of H Ggraph G -2
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Question: smallest -spanner of complete graph?1

Spanners
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Question: smallest -spanner of complete graph?2

Spanners
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Spanners

Question: smallest -spanner of complete graph?2
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Spanners

Moral: larger distortion allows smaller size (of spanner)

smallest -spanner2smallest -spanner1
(of complete graph) (of complete graph)

 edgesO(n) edgesO(n2)
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Spanners

Main Question: how large of distortion for  edges in general?O(n)

(of complete graph) (of complete graph)
smallest -spanner2smallest -spanner1

 edgesO(n) edgesO(n2)
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 and n := |V | m := |E |

Main Result Today

Theorem: every graph  has a -spanner  w/

• Distortion: 

• Size:

G t H
t = O(log n)

|H | = O(n)
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Distance Oracles with Spanners

between 

 and 
50/t 50

O(n)

O(n)How far from 

 to ?u v

BFS
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Roadmap of Proof

1. Simple Observation


 edge spanners suffice


2. Greedy Algorithm


suggested by observation


3. Distortion Analysis


4. Size Analysis


by “Moore Bounds”

Theorem: every graph  has a -spanner  w/

• Distortion: 

• Size:

G t H
t = O(log n)

|H | = O(n)
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Edge Spanners
Simple Observation

Definition (spanner): given graph  and , 

a -spanner  is a subgraph of  satisfying

G = (V, E) t ≥ 1
t H G

dH(u, v) ≤ t ⋅ dG(u, v) ∀u, v ∈ V
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Edge Spanners
Simple Observation

Definition (edge spanner): given graph  and , 

a -edge-spanner  is a subgraph of  satisfying

G = (V, E) t ≥ 1
t H G

dH(u, v)   ≤ t ∀{u, v} ∈ E
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Edge Spanners
Simple Observation

-spannert
(trivially a t-edge-spanner)

Claim:  is a -spanner iff it is a -edge-spannerH t t

all pairs distorted ≤ t all edges distorted ≤ t
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Edge Spanners
Simple Observation

Claim:  is a -spanner iff it is a -edge-spannerH t t

all pairs distorted ≤ t all edges distorted ≤ t

u v
∈ H{dG(u, v)

≤ t

-edge-spanner t H

≤ t ≤ t ≤ t

∈ G

So dH(u, v) ≤ t ⋅ dG(u, v)
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Roadmap of Proof

1. Simple Observation


 edge spanners suffice


2. Greedy Algorithm


suggested by observation


3. Distortion Analysis


4. Size Analysis


by “Moore Bounds”

Theorem: every graph  has a -spanner  w/

• Distortion: 

• Size:

G t H
t = O(log n)

|H | = O(n)
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Roadmap of Proof

1. Simple Observation


 edge spanners suffice


2. Greedy Algorithm


suggested by observation


3. Distortion Analysis


4. Size Analysis


by “Moore Bounds”

Theorem: every graph  has a -spanner  w/

• Distortion: 

• Size:

G t H
t = O(log n)

|H | = O(n)
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Greedy Algorithm

Claim:  is a -spanner iff it is a -edge-spannerH t t

Idea: be greedy wrt edges

suggests
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Greedy Algorithm

• 


• For :


• If  then 


H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

t = 3

Idea: be greedy wrt edges
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Roadmap of Proof

1. Simple Observation


 edge spanners suffice


2. Greedy Algorithm


suggested by observation


3. Distortion Analysis


4. Size Analysis


by “Moore Bounds”

Theorem: every graph  has a -spanner  w/

• Distortion: 

• Size:

G t H
t = O(log n)

|H | = O(n)
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Edge Spanners
Distortion Analysis

Claim: output  of greedy is a -edge-spannerH t

all edges distorted ≤ t

e ∈ E

e ∈ H e ∉ H

≤ t
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Edge Spanners
Distortion Analysis

Claim: output  of greedy is a -edge-spannerH t

Claim: output of greedy is a -spannert

all edges distorted ≤ t

e ∈ E

e ∈ H e ∉ H

≤ t

Claim:  is a -spanner iff it is a -edge-spannerH t t
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Definition (girth): the girth  of graph  is the length of its shortest cycleg H
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Size Analysis

girth 5
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Size Analysis

output of greedy algorithm with t = 3

Definition (girth): the girth  of graph  is the length of its shortest cycleg H
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Size Analysis

output of greedy algorithm with t = 3

Claim: output of greedy algorithm has girth ≥ t + 2
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AFSOC a -Cycle≤ t + 1
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Size Analysis

t = 3

AFSOC a -Cycle≤ t + 1

Claim: output of greedy algorithm has girth ≥ t + 2
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What’s Girth Have to Do with Size?
Size Analysis

Intuition: trees are sparse,

 Edges≤ n − 1

high girth = locally tree-like
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do 


depth 


BFS
⌊ g

2 ⌉ − 1

girth  graphg

0
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What’s Girth Have to Do with Size?
Size Analysis

Intuition: trees are sparse, high girth = locally tree-like

do 


depth 


BFS
⌊ g
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What’s Girth Have to Do with Size?
Size Analysis

Intuition: trees are sparse, high girth = locally tree-like

do 


depth 


BFS
⌊ g

2 ⌉ − 1

girth  graphg

0 1 2 3 4
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What’s Girth Have to Do with Size?
Size Analysis

Intuition: trees are sparse, high girth = locally tree-like

0 1 2 3 ⌊g/2⌋ − 14

do 


depth 


BFS
⌊ g

2 ⌉ − 1

girth  graphg
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What’s Girth Have to Do with Size?
Size Analysis

Intuition: trees are sparse, high girth = locally tree-like

do 


depth 


BFS
⌊ g

2 ⌉ − 1  cycle< g

girth  graphg

0 1 2 3 ⌊g/2⌋ − 14
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Size Analysis

Intuition: trees are sparse, high girth = locally tree-like

What’s Girth Have to Do with Size?

do 


depth 


BFS
⌊ g

2 ⌉ − 1

girth  graphg

0 1 2 3 ⌊g/2⌋ − 14
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Size Analysis

Intuition: trees are sparse, high girth = locally tree-like

What’s Girth Have to Do with Size?

do 


depth 


BFS
⌊ g

2 ⌉ − 1

girth  graphg

0 1 2 3 ⌊g/2⌋ − 14
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Size Analysis

do 


depth 


BFS
⌊ g

2 ⌉ − 1

Theorem: a girth  graph has at most  edgesΩ(log n) O(n)

girth  graphg

0 1 2 3 ⌊g/2⌋ − 14

What’s Girth Have to Do with Size?



Size Analysis

Theorem: a girth  graph has at most  edgesΩ(log n) O(n)



Size Analysis

Theorem: a girth  graph has at most  edgesΩ(log n) O(n)

Claim: output of greedy algorithm has girth ≥ t + 2

Theorem: output of greedy algorithm with  has at most  edgest = Ω(log n) O(n)
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Roadmap of Proof

1. Simple Observation


 edge spanners suffice


2. Greedy Algorithm


suggested by observation


3. Distortion Analysis


4. Size Analysis


by “Moore Bounds”

Theorem: every graph  has a -spanner  w/

• Distortion: 

• Size:

G t H
t = O(log n)

|H | = O(n)
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Roadmap of Proof

Theorem: every graph  has a -spanner  w/

• Distortion: 

• Size:

G t H
t = O(log n)

|H | = O(n)

1. Simple Observation


 edge spanners suffice


2. Greedy Algorithm


suggested by observation


3. Distortion Analysis


4. Size Analysis


by “Moore Bounds” Observe: poly-time computable 



Notable Generalizations

• Edge-weighted graphs


Run greedy algorithm in increasing order of edge lengths


• Size-distortion tradeoff


Just run greedy; optimal assuming “girth conjecture” of Erdős

Theorem: every graph 

 has a -spanner  w/

• Distortion: 

• Size:

G
t H

t = O(log n)
|H | = O(n)

Theorem: every graph  for every 

   has a -spanner  w/

• Distortion: 

• Size:

G t
t H

t
|H | = n1+O( 1

t )



Summary

1

Space

Time

Distortion

O(1) O(n) O(m)

O(m)

O(n)

O(n2) spanner

O (log n)

Motivation: distance oracles

Key Idea: greedy output is high girth, high girth is sparse

Theorem: every graph 

 has a -spanner  w/

• Distortion: 

• Size:

G
t H

t = O(log n)
|H | = O(n)

Main Result

1. Simple Observation


 edge spanners suffice


2. Greedy Algorithm


suggested by observation


3. Distortion Analysis


4. Size Analysis


by “Moore Bounds”

Roadmap


