Spanners Mini-Talk

Fall 2023

Brown University

D Ellis Hershkowitz (Ellis)

Motivation: Distance Oracles

Computing Distances

(Transportation) Network
Some notion of distance

Motivation: Distance Oracles

Computing Distances

Graph $G=(V, E)$

$$
d_{G}(u, v):=\min \{|P|: \text { path } P \text { from } u \text { to } v\}
$$

Motivation: Distance Oracles

Computing Distances

Graph $G=(V, E, w)$

$$
d_{G}(u, v):=\min \{w(P): \text { path } P \text { from } u \text { to } v\}
$$

Motivation: Distance Oracles

Computing Distances

Graph $G=(V, E)$

$$
d_{G}(u, v):=\min \{|P|: \text { path } P \text { from } u \text { to } v\}
$$

Motivation: Distance Oracles

Computing Distances

Motivation: Distance Oracles

Computing Distances

Tradeoff: space (of data structure) vs (response) time

Motivation: Distance Oracles

Small but Slow

How far from u to v ?

Tradeoff: space (of data structure) vs (response) time

$$
n:=|V| \text { and } m:=|E|
$$

Motivation: Distance Oracles

Fast but Large

Tradeoff: space (of data structure) vs (response) time

Motivation: Distance Oracles

Plotting Tradeoffs

Motivation: Distance Oracles

Plotting Tradeoffs

Spanners

Observe: $d_{G}(u, v) \leq d_{H}(u, v) \forall u, v \in V$

graph G

2-spanner H of G

Definition (spanner): given graph $G=(V, E)$ and $t \geq 1$,
a t-spanner H is a subgraph of G satisfying

$$
d_{H}(u, v) \leq t \cdot d_{G}(u, v) \quad \forall u, v \in V
$$

Spanners

Question: smallest 1-spanner of complete graph?

Spanners

Question: smallest 2-spanner of complete graph?

Spanners

Question: smallest 2-spanner of complete graph?

Spanners

Moral: larger distortion allows smaller size (of spanner)

Spanners

Main Question: how large of distortion for $O(n)$ edges in general?

Main Result Today

Theorem: every graph G has a t-spanner H w/

- Distortion: $t=O(\log n)$
- Size: $|H|=O(n)$

Distance Oracles with Spanners

Roadmap of Proof

1. Simple Observation
edge spanners suffice
2. Greedy Algorithm
suggested by observation
3. Distortion Analysis
4. Size Analysis
by "Moore Bounds"

Theorem: every graph G has a t-spanner $H \mathrm{w} /$

- Distortion: $t=O(\log n)$
- Size: $|H|=O(n)$

Simple Observation

Edge Spanners

Definition (spanner): given graph $G=(V, E)$ and $t \geq 1$, a t-spanner H is a subgraph of G satisfying

$$
d_{H}(u, v) \leq t \cdot d_{G}(u, v)
$$

Simple Observation

Edge Spanners

Definition (edge spanner): given graph $G=(V, E)$ and $t \geq 1$, a t-edge-spanner H is a subgraph of G satisfying

$$
d_{H}(u, v) \leq t \quad \forall\{u, v\} \in E
$$

Simple Observation

Edge Spanners

all pairs distorted $\leq t$
all edges distorted $\leq t$

Claim: H is a t-spanner iff it is a t-edge-spanner

t-spanner
(trivially a t-edge-spanner)

Simple Observation

Edge Spanners

all pairs distorted $\leq t$

all edges distorted $\leq t$

Claim: H is a t-spanner iff it is a t-edge-spanner

t-edge-spanner H

$$
\text { So } d_{H}(u, v) \leq t \cdot d_{G}(u, v)
$$

Roadmap of Proof

1. Simple Observation
edge spanners suffice
2. Greedy Algorithm
suggested by observation
3. Distortion Analysis
4. Size Analysis
by "Moore Bounds"

Theorem: every graph G has a t-spanner $H \mathrm{w} /$

- Distortion: $t=O(\log n)$
- Size: $|H|=O(n)$

Roadmap of Proof

Simple Observation

edge spanners suffice
2. Greedy Algorithm
suggested by observation
3. Distortion Analysis
4. Size Analysis
by "Moore Bounds"

Theorem: every graph G has a t-spanner $H \mathrm{w} /$

- Distortion: $t=O(\log n)$
- Size: $|H|=O(n)$

Greedy Algorithm

Claim: H is a t-spanner iff it is a t-edge-spanner

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Greedy Algorithm

- $H \leftarrow \varnothing$
- For $\{u, v\} \in E$:
- If $d_{H}(u, v)>t$ then

$$
H \leftarrow H+\{u, v\}
$$

$$
G=(V, E)
$$

Idea: be greedy wrt edges

Roadmap of Proof

Simple Observation

edge spanners suffice
2. Greedy Algorithm
suggested by observation
3. Distortion Analysis
4. Size Analysis
by "Moore Bounds"
Theorem: every graph G has a t-spanner $H \mathrm{w} /$

- Distortion: $t=O(\log n)$
- Size: $|H|=O(n)$

Roadmap of Proof

Simple Observation

edge spanners suffice
Greedy Algorithm
suggested by observation
3. Distortion Analysis
4. Size Analysis
by "Moore Bounds"

Theorem: every graph G has a t-spanner $H \mathrm{w} /$

- Distortion: $t=O(\log n)$
- Size: $|H|=O(n)$

Distortion Analysis

Edge Spanners

all edges distorted $\leq t$

Claim: output H of greedy is a t-edge-spanner

Distortion Analysis

Edge Spanners

all edges distorted $\leq t$

Claim: output H of greedy is a t-edge-spanner

Claim: H is a t-spanner iff it is a t-edge-spanner

Claim: output of greedy is a t-spanner

Roadmap of Proof

Simple Observation

edge spanners suffice
Greedy Algorithm
suggested by observation
3. Distortion Analysis
4. Size Analysis
by "Moore Bounds"

Theorem: every graph G has a t-spanner $H \mathrm{w} /$

- Distortion: $t=O(\log n)$
- Size: $|H|=O(n)$

Roadmap of Proof

Simple Observation

edge spanners suffice
Greedy Algorithm
suggested by observation
Distortion Analysis
4. Size Analysis
by "Moore Bounds"
Theorem: every graph G has a t-spanner H w/

- Distortion: $t=O(\log n)$
- Size: $|H|=O(n)$

Size Analysis

girth 5

Definition (girth): the girth g of graph H is the length of its shortest cycle

Size Analysis

output of greedy algorithm with $t=3$
Definition (girth): the girth g of graph H is the length of its shortest cycle

Size Analysis

output of greedy algorithm with $t=3$
Claim: output of greedy algorithm has girth $\geq t+2$

Size Analysis

AFSOC a $\leq t+1$-Cycle

Claim: output of greedy algorithm has girth $\geq t+2$

Size Analysis

AFSOC a $\leq t+1$-Cycle

Claim: output of greedy algorithm has girth $\geq t+2$

Size Analysis

$$
\text { AFSOC } a \leq t+1 \text {-Cycle }
$$

Claim: output of greedy algorithm has girth $\geq t+2$

Size Analysis

$$
\text { AFSOC } a \leq t+1 \text {-Cycle }
$$

Claim: output of greedy algorithm has girth $\geq t+2$

Size Analysis

AFSOC a $\leq t+1$-Cycle

Claim: output of greedy algorithm has girth $\geq t+2$

Size Analysis

AFSOC a $\leq t+1$-Cycle

Claim: output of greedy algorithm has girth $\geq t+2$

Size Analysis

$$
\text { AFSOC a } \leq t+1 \text {-Cycle }
$$

Claim: output of greedy algorithm has girth $\geq t+2$

Size Analysis

$$
\text { AFSOC a } \leq t+1 \text {-Cycle }
$$

Claim: output of greedy algorithm has girth $\geq t+2$

Size Analysis

$$
\text { AFSOC a } \leq t+1 \text {-Cycle }
$$

Claim: output of greedy algorithm has girth $\geq t+2$

Size Analysis

What's Girth Have to Do with Size?

Intuition: trees are sparse, high girth = locally tree-like

Size Analysis

What's Girth Have to Do with Size?

$$
\begin{array}{cc}
& 0 \\
\text { depth }\left\lfloor\frac{g}{2}\right\rceil-1 & \\
\text { BFS } & \text { girth } g \text { graph }
\end{array}
$$

Intuition: trees are sparse, high girth = locally tree-like

Size Analysis

What's Girth Have to Do with Size?

girth g graph

Intuition: trees are sparse, high girth = locally tree-like

Size Analysis

What's Girth Have to Do with Size?

Intuition: trees are sparse, high girth = locally tree-like

Size Analysis

What's Girth Have to Do with Size?

Intuition: trees are sparse, high girth = locally tree-like

Size Analysis

What's Girth Have to Do with Size?

Intuition: trees are sparse, high girth = locally tree-like

Size Analysis

What's Girth Have to Do with Size?

Intuition: trees are sparse, high girth = locally tree-like

Size Analysis

What's Girth Have to Do with Size?

Intuition: trees are sparse, high girth = locally tree-like

Size Analysis

What's Girth Have to Do with Size?

Intuition: trees are sparse, high girth = locally tree-like

Size Analysis

What's Girth Have to Do with Size?

Intuition: trees are sparse, high girth = locally tree-like

Size Analysis

What's Girth Have to Do with Size?

Intuition: trees are sparse, high girth = locally tree-like

Size Analysis

What's Girth Have to Do with Size?

Theorem: a girth $\Omega(\log n)$ graph has at most $O(n)$ edges

Size Analysis

Theorem: a girth $\Omega(\log n)$ graph has at most $O(n)$ edges

Size Analysis

Theorem: a girth $\Omega(\log n)$ graph has at most $O(n)$ edges

Claim: output of greedy algorithm has girth $\geq t+2$

Theorem: output of greedy algorithm with $t=\Omega(\log n)$ has at most $O(n)$ edges

Roadmap of Proof

Simple Observation

edge spanners suffice
Greedy Algorithm
suggested by observation
Distortion Analysis
4. Size Analysis
by "Moore Bounds"

Theorem: every graph G has a t-spanner $H \mathrm{w} /$

- Distortion: $t=O(\log n)$
- Size: $|H|=O(n)$

Roadmap of Proof

Simple Observation

edge spanners suffice
Greedy Algorithm
suggested by observation

Distortion Analysis

Size Analysis
by "Moore Bounds"

Theorem: every graph G has a t-spanner $H \mathrm{w} /$

- Distortion: $t=O(\log n)$
- Size: $|H|=O(n)$

Observe: poly-time computable

Notable Generalizations

- Edge-weighted graphs

Run greedy algorithm in increasing order of edge lengths

- Size-distortion tradeoff

Just run greedy; optimal assuming "girth conjecture" of Erdős

Theorem: every graph G has a t-spanner $H \mathrm{w} /$

- Distortion: $t=O(\log n)$
- Size: $|H|=O(n)$

Theorem: every graph G for every t has a t-spanner $H \mathrm{w} /$

- Distortion: t
- Size: $|H|=n^{1+O\left(\frac{1}{t}\right)}$

Summary

Motivation: distance oracles

Theorem: every graph G has a t-spanner H w/

- Distortion: $t=O(\log n)$
- Size: $|H|=O(n)$

Main Result

1. Simple Observation
edge spanners suffice
2. Greedy Algorithm
suggested by observation
3. Distortion Analysis
4. Size Analysis
by "Moore Bounds"

Roadmap

Key Idea: greedy output is high girth, high girth is sparse

