
D Ellis Hershkowitz (Ellis)

Spanners Mini-Talk
Fall 2023

Brown University

Motivation: Distance Oracles

2

Computing Distances

(Transportation) Network

Some notion of distance

Motivation: Distance Oracles

3

Computing Distances

Graph G = (V, E)

dG(u, v) := min{ |P | : path P from u to v}

Motivation: Distance Oracles

4

Computing Distances

dG(u, v) := min{w(P): path P from u to v}

Graph G = (V, E, w)

w(P) := ∑
e∈P

w(e)

2

4

4

5

1

42

2

5 4
3

5
5

3

4

2
4

4

2

2

3

3
1

4

Motivation: Distance Oracles

5

Computing Distances

Graph G = (V, E)

dG(u, v) := min{ |P | : path P from u to v}

Motivation: Distance Oracles

6

Computing Distances

Data

Structure 50

How far from

 to ?u v

A distance “API”

Data

Structure

Motivation: Distance Oracles

7

Computing Distances

Tradeoff: space (of data structure) vs (response) time

50

How far from

 to ?u v

A distance “API”

8

Small but Slow

 and n := |V | m := |E |

Motivation: Distance Oracles

O(m) O(m)

Tradeoff: space (of data structure) vs (response) time

50

How far from

 to ?u v

Input Graph

BFS

9

Fast but Large
Motivation: Distance Oracles

O(n2)

O(1)

Tradeoff: space (of data structure) vs (response) time

Complete Graph with w = dG

 and n := |V | m := |E |

50

How far from

 to ?u v

1

10

Plotting Tradeoffs

 and n := |V | m := |E |

Motivation: Distance Oracles

Space

Time

Distortion

O(n) O(m)

O(m)

O(n)

complete graph

input graph

O(log n)

O(n2)

O(1)

1

11

Plotting Tradeoffs

 and n := |V | m := |E |

Motivation: Distance Oracles

Space

Time

Distortion

O(n) O(m)

O(m)

O(n)

complete graph

input graph

spanner

O(log n)

O(n2)

O(1)

12

Definition (spanner): given graph and ,

a -spanner is a subgraph of satisfying

G = (V, E) t ≥ 1
t H G

dH(u, v) ≤ t⋅ dG(u, v) ∀u, v ∈ V

Spanners
dG(u, v) ≤ dH(u, v)Observe: ∀u, v ∈ V

spanner of H Ggraph G -2

13

Question: smallest -spanner of complete graph?1

Spanners

14

Question: smallest -spanner of complete graph?2

Spanners

15

Spanners

Question: smallest -spanner of complete graph?2

16

Spanners

Moral: larger distortion allows smaller size (of spanner)

smallest -spanner2smallest -spanner1
(of complete graph) (of complete graph)

 edgesO(n) edgesO(n2)

17

Spanners

Main Question: how large of distortion for edges in general?O(n)

(of complete graph) (of complete graph)
smallest -spanner2smallest -spanner1

 edgesO(n) edgesO(n2)

18

 and n := |V | m := |E |

Main Result Today

Theorem: every graph has a -spanner w/

• Distortion:

• Size:

G t H
t = O(log n)

|H | = O(n)

19

Distance Oracles with Spanners

between

 and
50/t 50

O(n)

O(n)How far from

 to ?u v

BFS

20

Roadmap of Proof

1. Simple Observation

 edge spanners suffice

2. Greedy Algorithm

suggested by observation

3. Distortion Analysis

4. Size Analysis

by “Moore Bounds”

Theorem: every graph has a -spanner w/

• Distortion:

• Size:

G t H
t = O(log n)

|H | = O(n)

21

Edge Spanners
Simple Observation

Definition (spanner): given graph and ,

a -spanner is a subgraph of satisfying

G = (V, E) t ≥ 1
t H G

dH(u, v) ≤ t ⋅ dG(u, v) ∀u, v ∈ V

22

Edge Spanners
Simple Observation

Definition (edge spanner): given graph and ,

a -edge-spanner is a subgraph of satisfying

G = (V, E) t ≥ 1
t H G

dH(u, v) ≤ t ∀{u, v} ∈ E

23

Edge Spanners
Simple Observation

-spannert
(trivially a t-edge-spanner)

Claim: is a -spanner iff it is a -edge-spannerH t t

all pairs distorted ≤ t all edges distorted ≤ t

24

Edge Spanners
Simple Observation

Claim: is a -spanner iff it is a -edge-spannerH t t

all pairs distorted ≤ t all edges distorted ≤ t

u v
∈ H{dG(u, v)

≤ t

-edge-spanner t H

≤ t ≤ t ≤ t

∈ G

So dH(u, v) ≤ t ⋅ dG(u, v)

25

Roadmap of Proof

1. Simple Observation

 edge spanners suffice

2. Greedy Algorithm

suggested by observation

3. Distortion Analysis

4. Size Analysis

by “Moore Bounds”

Theorem: every graph has a -spanner w/

• Distortion:

• Size:

G t H
t = O(log n)

|H | = O(n)

26

Roadmap of Proof

1. Simple Observation

 edge spanners suffice

2. Greedy Algorithm

suggested by observation

3. Distortion Analysis

4. Size Analysis

by “Moore Bounds”

Theorem: every graph has a -spanner w/

• Distortion:

• Size:

G t H
t = O(log n)

|H | = O(n)

27

Greedy Algorithm

Claim: is a -spanner iff it is a -edge-spannerH t t

Idea: be greedy wrt edges

suggests

28

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

t = 3

Idea: be greedy wrt edges

29

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

t = 3

Idea: be greedy wrt edges

30

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

31

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

32

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

33

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

34

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

35

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

36

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

37

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

38

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

39

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

40

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

41

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

42

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

43

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

44

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

45

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

46

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

47

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

48

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

49

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

50

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

51

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

52

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

53

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

54

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

55

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

56

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

57

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

58

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

59

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

60

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

61

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

62

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

63

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

64

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

65

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

66

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

67

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

68

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

69

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

70

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

71

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

72

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

73

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

74

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

75

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

76

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

77

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

78

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

79

Greedy Algorithm

•

• For :

• If then

H ← ∅

{u, v} ∈ E

dH(u, v) > t

H ← H + {u, v}

G = (V, E)

Idea: be greedy wrt edges

t = 3

80

Roadmap of Proof

1. Simple Observation

 edge spanners suffice

2. Greedy Algorithm

suggested by observation

3. Distortion Analysis

4. Size Analysis

by “Moore Bounds”

Theorem: every graph has a -spanner w/

• Distortion:

• Size:

G t H
t = O(log n)

|H | = O(n)

81

Roadmap of Proof

1. Simple Observation

 edge spanners suffice

2. Greedy Algorithm

suggested by observation

3. Distortion Analysis

4. Size Analysis

by “Moore Bounds”

Theorem: every graph has a -spanner w/

• Distortion:

• Size:

G t H
t = O(log n)

|H | = O(n)

82

Edge Spanners
Distortion Analysis

Claim: output of greedy is a -edge-spannerH t

all edges distorted ≤ t

e ∈ E

e ∈ H e ∉ H

≤ t

83

Edge Spanners
Distortion Analysis

Claim: output of greedy is a -edge-spannerH t

Claim: output of greedy is a -spannert

all edges distorted ≤ t

e ∈ E

e ∈ H e ∉ H

≤ t

Claim: is a -spanner iff it is a -edge-spannerH t t

84

Roadmap of Proof

1. Simple Observation

 edge spanners suffice

2. Greedy Algorithm

suggested by observation

3. Distortion Analysis

4. Size Analysis

by “Moore Bounds”

Theorem: every graph has a -spanner w/

• Distortion:

• Size:

G t H
t = O(log n)

|H | = O(n)

85

Roadmap of Proof

1. Simple Observation

 edge spanners suffice

2. Greedy Algorithm

suggested by observation

3. Distortion Analysis

4. Size Analysis

by “Moore Bounds”

Theorem: every graph has a -spanner w/

• Distortion:

• Size:

G t H
t = O(log n)

|H | = O(n)

Definition (girth): the girth of graph is the length of its shortest cycleg H

86

Size Analysis

girth 5

87

Size Analysis

output of greedy algorithm with t = 3

Definition (girth): the girth of graph is the length of its shortest cycleg H

88

Size Analysis

output of greedy algorithm with t = 3

Claim: output of greedy algorithm has girth ≥ t + 2

89

Size Analysis

t = 3

AFSOC a -Cycle≤ t + 1

Claim: output of greedy algorithm has girth ≥ t + 2

90

Size Analysis

t = 3

AFSOC a -Cycle≤ t + 1

Claim: output of greedy algorithm has girth ≥ t + 2

91

Size Analysis

t = 3

AFSOC a -Cycle≤ t + 1

Claim: output of greedy algorithm has girth ≥ t + 2

92

Size Analysis

t = 3

AFSOC a -Cycle≤ t + 1

Claim: output of greedy algorithm has girth ≥ t + 2

93

Size Analysis

t = 3

AFSOC a -Cycle≤ t + 1

Claim: output of greedy algorithm has girth ≥ t + 2

94

Size Analysis

t = 3

AFSOC a -Cycle≤ t + 1

Claim: output of greedy algorithm has girth ≥ t + 2

95

Size Analysis

t = 3

AFSOC a -Cycle≤ t + 1

Claim: output of greedy algorithm has girth ≥ t + 2

96

Size Analysis

t = 3

AFSOC a -Cycle≤ t + 1

Claim: output of greedy algorithm has girth ≥ t + 2

97

Size Analysis

t = 3

AFSOC a -Cycle≤ t + 1

Claim: output of greedy algorithm has girth ≥ t + 2

98

What’s Girth Have to Do with Size?
Size Analysis

Intuition: trees are sparse,

 Edges≤ n − 1

high girth = locally tree-like

99

What’s Girth Have to Do with Size?
Size Analysis

Intuition: trees are sparse, high girth = locally tree-like

do

depth

BFS
⌊ g

2 ⌉ − 1

girth graphg

0

100

What’s Girth Have to Do with Size?
Size Analysis

Intuition: trees are sparse, high girth = locally tree-like

do

depth

BFS
⌊ g

2 ⌉ − 1

girth graphg

0 1

101

What’s Girth Have to Do with Size?
Size Analysis

Intuition: trees are sparse, high girth = locally tree-like

do

depth

BFS
⌊ g

2 ⌉ − 1

girth graphg

0 1 2

102

What’s Girth Have to Do with Size?
Size Analysis

Intuition: trees are sparse, high girth = locally tree-like

do

depth

BFS
⌊ g

2 ⌉ − 1

girth graphg

0 1 2 3

103

What’s Girth Have to Do with Size?
Size Analysis

Intuition: trees are sparse, high girth = locally tree-like

do

depth

BFS
⌊ g

2 ⌉ − 1

girth graphg

0 1 2 3 4

104

What’s Girth Have to Do with Size?
Size Analysis

Intuition: trees are sparse, high girth = locally tree-like

0 1 2 3 ⌊g/2⌋ − 14

do

depth

BFS
⌊ g

2 ⌉ − 1

girth graphg

??

105

What’s Girth Have to Do with Size?
Size Analysis

Intuition: trees are sparse, high girth = locally tree-like

do

depth

BFS
⌊ g

2 ⌉ − 1

girth graphg

0 1 2 3 ⌊g/2⌋ − 14

106

What’s Girth Have to Do with Size?
Size Analysis

Intuition: trees are sparse, high girth = locally tree-like

do

depth

BFS
⌊ g

2 ⌉ − 1 cycle< g

girth graphg

0 1 2 3 ⌊g/2⌋ − 14

107

Size Analysis

Intuition: trees are sparse, high girth = locally tree-like

What’s Girth Have to Do with Size?

do

depth

BFS
⌊ g

2 ⌉ − 1

girth graphg

0 1 2 3 ⌊g/2⌋ − 14

108

Size Analysis

Intuition: trees are sparse, high girth = locally tree-like

What’s Girth Have to Do with Size?

do

depth

BFS
⌊ g

2 ⌉ − 1

girth graphg

0 1 2 3 ⌊g/2⌋ − 14

109

Size Analysis

do

depth

BFS
⌊ g

2 ⌉ − 1

Theorem: a girth graph has at most edgesΩ(log n) O(n)

girth graphg

0 1 2 3 ⌊g/2⌋ − 14

What’s Girth Have to Do with Size?

Size Analysis

Theorem: a girth graph has at most edgesΩ(log n) O(n)

Size Analysis

Theorem: a girth graph has at most edgesΩ(log n) O(n)

Claim: output of greedy algorithm has girth ≥ t + 2

Theorem: output of greedy algorithm with has at most edgest = Ω(log n) O(n)

112

Roadmap of Proof

1. Simple Observation

 edge spanners suffice

2. Greedy Algorithm

suggested by observation

3. Distortion Analysis

4. Size Analysis

by “Moore Bounds”

Theorem: every graph has a -spanner w/

• Distortion:

• Size:

G t H
t = O(log n)

|H | = O(n)

113

Roadmap of Proof

Theorem: every graph has a -spanner w/

• Distortion:

• Size:

G t H
t = O(log n)

|H | = O(n)

1. Simple Observation

 edge spanners suffice

2. Greedy Algorithm

suggested by observation

3. Distortion Analysis

4. Size Analysis

by “Moore Bounds” Observe: poly-time computable

Notable Generalizations

• Edge-weighted graphs

Run greedy algorithm in increasing order of edge lengths

• Size-distortion tradeoff

Just run greedy; optimal assuming “girth conjecture” of Erdős

Theorem: every graph

 has a -spanner w/

• Distortion:

• Size:

G
t H

t = O(log n)
|H | = O(n)

Theorem: every graph for every

 has a -spanner w/

• Distortion:

• Size:

G t
t H

t
|H | = n1+O(1

t)

Summary

1

Space

Time

Distortion

O(1) O(n) O(m)

O(m)

O(n)

O(n2) spanner

O (log n)

Motivation: distance oracles

Key Idea: greedy output is high girth, high girth is sparse

Theorem: every graph

 has a -spanner w/

• Distortion:

• Size:

G
t H

t = O(log n)
|H | = O(n)

Main Result

1. Simple Observation

 edge spanners suffice

2. Greedy Algorithm

suggested by observation

3. Distortion Analysis

4. Size Analysis

by “Moore Bounds”

Roadmap

