### **Spanners Mini-Talk** Fall 2023 Brown University

D Ellis Hershkowitz (Ellis)





(Transportation) Network

Some notion of distance



Graph G = (V, E)

 $d_G(u, v) := \min\{|P| : \text{path } P \text{ from } u \text{ to } v\}$ 



Graph G = (V, E, w)

 $d_G(u, v) := \min\{w(P): \text{ path } P \text{ from } u \text{ to } v\}$ 



 $e \in P$ 



Graph G = (V, E)

 $d_G(u, v) := \min\{|P| : \text{path } P \text{ from } u \text{ to } v\}$ 

How far from u to v?



A distance "API"





How far from u to v?



A distance "API"



**Tradeoff: space** (of data structure) vs (response) **time** 

### **Motivation: Distance Oracles Small but Slow**

# How far from u to v?Input Graph

n := |V| and m := |E|



### **Tradeoff: space** (of data structure) vs (response) **time**



### **Motivation: Distance Oracles** Fast but Large

How far from u to v?







**Tradeoff: space** (of data structure) vs (response) time

Complete Graph with  $w = d_G$ 



### **Motivation: Distance Oracles Plotting Tradeoffs**





### **Motivation: Distance Oracles Plotting Tradeoffs**







graph G

#### **Observe:** $d_G(u, v) \le d_H(u, v) \ \forall u, v \in V$



2-spanner H of G

**Definition** (spanner): given graph G = (V, E) and  $t \ge 1$ , a *t*-spanner H is a subgraph of G satisfying  $d_H(u,v) \leq t \cdot d_G(u,v)$  $\forall u, v \in V$ 





#### **Question:** smallest 1-spanner of complete graph?



#### **Question:** smallest 2-spanner of complete graph?



#### **Question:** smallest 2-spanner of complete graph?



smallest 1-spanner (of complete graph)



smallest 2-spanner (of complete graph)

Moral: larger distortion allows smaller size (of spanner)



smallest 1-spanner (of complete graph)



smallest 2-spanner (of complete graph)

Main Question: how large of distortion for O(n) edges in general?

# Main Result Today



### **Theorem:** every graph *G* has a *t*-spanner *H* w/ • **Distortion:** $t = O(\log n)$ • **Size:** |H| = O(n)





# **Distance Oracles with Spanners**

### How far from u to v?







# Roadmap of Proof

### 1. Simple Observation

edge spanners suffice

#### 2. Greedy Algorithm

suggested by observation

- 3. Distortion Analysis
- 4. Size Analysis

by "Moore Bounds"



Theorem: every graph G has a t-spanner H w/
Distortion: t = O(log n)

• **Size:** |H| = O(n)







**Definition** (spanner): given graph G = (V, E) and  $t \ge 1$ , a t-spanner H is a subgraph of G satisfying  $d_H(u,v) \le t \cdot d_G(u,v)$  $\forall u, v \in V$ 





**Definition** (edge spanner): given graph G = (V, E) and  $t \ge 1$ , a *t*-edge-spanner H is a subgraph of G satisfying  $\forall \{u, v\} \in E$  $d_H(u,v) \leq t$ 

### all pairs distorted $\leq t$ all edges distorted $\leq t$ **Claim**: *H* is a *t*-spanner iff it is a *t*-edge-spanner



*t*-spanner (trivially a t-edge-spanner)



### all pairs distorted $\leq t$ all edges distorted $\leq t$ **Claim**: *H* is a *t*-spanner iff it is a *t*-edge-spanner



*t*-edge-spanner *H* 

 $\in H$  $d_G(u,v)$ 

So  $d_H(u, v) \le t \cdot d_G(u, v)$ 

# Roadmap of Proof

### 1. Simple Observation

edge spanners suffice

#### 2. Greedy Algorithm

suggested by observation

- 3. Distortion Analysis
- 4. Size Analysis

by "Moore Bounds"



**Theorem:** every graph G has a t-spanner  $H \le t - O(\log n)$ 

- **Distortion:**  $t = O(\log n)$
- **Size:** |H| = O(n)



# Roadmap of Proof



edge spanners suffice

#### 2. Greedy Algorithm

suggested by observation

- 3. Distortion Analysis
- 4. Size Analysis

by "Moore Bounds"



Theorem: every graph G has a t-spanner H w/
Distortion: t = O(log n)

• **Size:** |H| = O(n)



#### **Claim**: *H* is a *t*-spanner iff it is a *t*-edge-spanner



#### • $H \leftarrow \emptyset$

### • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

### • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

### • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

### • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

### • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

### • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

### • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

### • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

### • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

## • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

## • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

## • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

## • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

## • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

## • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

## • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

## • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

## • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

## • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

## • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

## • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

## • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

## • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

## • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

## • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

## • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

## • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

## • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

## • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

## • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

## • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

## • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

## • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

## • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

## • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

## • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

## • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

## • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

## • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

## • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

## • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

## • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

## • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

## • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

## • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

### • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

### • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

### • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

### • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

### • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

### • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



#### • $H \leftarrow \emptyset$

### • For $\{u, v\} \in E$ :

• If  $d_H(u, v) > t$  then

#### $H \leftarrow H + \{u, v\}$





G = (V, E)



# Roadmap of Proof



edge spanners suffice

#### 2. Greedy Algorithm

suggested by observation

- 3. Distortion Analysis
- 4. Size Analysis

by "Moore Bounds"



Theorem: every graph G has a t-spanner H w/
Distortion: t = O(log n)

• **Size:** |H| = O(n)



# Roadmap of Proof



edge spanners suffice



suggested by observation

- 3. Distortion Analysis
- 4. Size Analysis

by "Moore Bounds"



**Theorem:** every graph G has a t-spanner  $H \le G(\log x)$ 

- **Distortion:**  $t = O(\log n)$
- **Size:** |H| = O(n)



## **Distortion Analysis Edge Spanners**

**Claim**: output *H* of greedy is a *t*-edge-spanner



## **Distortion Analysis** Edge Spanners

**Claim**: output *H* of greedy is a *t*-edge-spanner

#### **Claim**: *H* is a *t*-spanner iff it is a *t*-edge-spanner

**Claim**: output of greedy is a *t*-spanner



# Roadmap of Proof



edge spanners suffice



suggested by observation

- 3. Distortion Analysis
- 4. Size Analysis

by "Moore Bounds"



**Theorem:** every graph G has a t-spanner  $H \le t - O(\log n)$ 

- **Distortion:**  $t = O(\log n)$
- **Size:** |H| = O(n)



# Roadmap of Proof



edge spanners suffice



suggested by observation



#### 4. Size Analysis

by "Moore Bounds"



**Theorem:** every graph G has a t-spanner H w/

- **Distortion:**  $t = O(\log n)$
- **Size:** |H| = O(n)





**Definition** (girth): the girth g of graph H is the length of its shortest cycle





output of greedy algorithm with t = 3

**Definition** (girth): the girth g of graph H is the length of its shortest cycle





**Claim:** output of greedy algorithm has girth  $\geq t + 2$ 

output of greedy algorithm with t = 3

# t = 3 $AFSOC a \le t + 1$ -Cycle

## **Claim:** output of greedy algorithm has girth $\geq t + 2$

# t = 3 $AFSOC a \le t + 1$ -Cycle

## **Claim:** output of greedy algorithm has girth $\geq t + 2$

## **Claim:** output of greedy algorithm has girth $\geq t + 2$



### **Claim:** output of greedy algorithm has girth $\geq t + 2$





### **Claim:** output of greedy algorithm has girth $\geq t + 2$





### **Claim:** output of greedy algorithm has girth $\geq t + 2$





## **Claim:** output of greedy algorithm has girth $\geq t + 2$





## **Claim:** output of greedy algorithm has girth $\geq t + 2$





## **Claim:** output of greedy algorithm has girth $\geq t + 2$





0



#### girth g graph



#### girth g graph





girth g graph



girth g graph



#### girth g graph



#### **Theorem:** a girth $\Omega(\log n)$ graph has at most O(n) edges

girth g graph



#### **Theorem:** a girth $\Omega(\log n)$ graph has at most O(n) edges





**Claim:** output of greedy algorithm has girth  $\geq t + 2$ 

**Theorem:** output of greedy algorithm with  $t = \Omega(\log n)$  has at most O(n) edges



# Roadmap of Proof



edge spanners suffice



suggested by observation



#### 4. Size Analysis

by "Moore Bounds"



**Theorem:** every graph G has a t-spanner H w/

- **Distortion:**  $t = O(\log n)$
- **Size:** |H| = O(n)



# Roadmap of Proof



edge spanners suffice



suggested by observation





by "Moore Bounds"



**Theorem:** every graph *G* has a *t*-spanner *H* w/

- **Distortion:**  $t = O(\log n)$
- **Size:** |H| = O(n)

**Observe:** poly-time computable



## **Notable Generalizations**

 Edge-weighted graphs Run greedy algorithm in increasing order of edge lengths

• Size-distortion tradeoff

Just run greedy; optimal assuming "girth conjecture" of Erdős

**Theorem:** every graph *G* has a *t*-spanner *H* w/

- **Distortion:**  $t = O(\log n)$
- Size: |H| = O(n)

**Theorem:** every graph *G* for every *t* has a *t*-spanner *H* w/

- **Distortion:** *t*
- Size:  $|H| = n^{1+O(\frac{1}{t})}$

## Summary



# Theorem: every graph G has a *t*-spanner H w/ Distortion: t = O(log n) Size: |H| = O(n)

#### Motivation: distance oracles



Key Idea: greedy output is high girth, high girth is sparse

Main Result

#### Simple Observation

edge spanners suffice

2. Greedy Algorithm

suggested by observation

- 3. **Distortion Analysis**
- 4. Size Analysis

by "Moore Bounds"

#### Roadmap

