
D Ellis Hershkowitz (Ellis)

Frontiers of Graph Algorithms
Fall 2023

Brown University

https://dhershko.github.io/teaching/fall23Seminar.html

https://dhershko.github.io/teaching/fall23Seminar.html

E

• General

• Computationally tractable

Graph Algorithms

2

Why Study Graph (Algorithms)?

graph G = (,)V

…

P

NP co-NP

EXP

(many) graph

problems

∑ = Π

• General

• Computationally tractable

Graph Algorithms

3

dG(u, v) := min{ |P | : path P from u to v}

graph G = (,)V E
()dG(u, v) = 5

…∑ Π

 for all

 in time
dG(u, v) u, v

O (n ⋅ m)

Why Study Graph Distance (Algorithms)?

u

v

 and n := |V | m := |E |

Class Topic

4

Graph Sparsification

graph G = (,)V E

Focus: graph sparsification

simple representation

of some property of

H
G

Class Topic

5

Graph Distance Sparsification

graph G = (,)V E

Focus: graph sparsification

spanning tree

s.t.

H
dG = dH

6

Why Study Sparsification?
Theme 1: Sparsification Helps Algorithms

What’s the shortest path?u → v

u

v

What’s the shortest path?u → v

Focus: graph sparsification

u

v

?

7

Theme 2: Approximation Helps Sparsification
Challenges of Sparsification

graph G = (,)V E

Focus: graph sparsification

u

v dG(u, v) = 1 dG(u, v) = n − 1

spanning tree

 s.t.

H
dH = dG

u

v

8

graph G = (,)V E spanning tree

 s.t.

H
dH ≈ dG

Focus: graph sparsification

Challenges of Sparsification
Theme 2: Approximation Helps Sparsification

How To Solve Your Favorite Graph Problem

9

Hard Problem

 on G

Easy Problem

on H

sparsify to

(Theme 2)

G H

Solution

on H

apply algorithm (Theme 1)

Solution

on G

convert

solution

Focus: graph sparsification

10

Logistics Overview

Format Of Class

11

Seminar Format

• 11 (remaining) classes

• 1 paper / class (papers already chosen by me)

• First 2 classes by me

• For other classes 1-2 students present / class
class

1
class

2
class

3
class

4
class

5
class

6
class

7
class

8
class

9
class

10
class

11
class

12

today paper

1

paper

2

paper

3

paper

4

paper

5

paper

6

paper

7

paper

8

paper

9

paper

10

paper

11

Format Of Class

12

Class Format

1. Introduction: ~30 minutes

2. Break: ~20 minutes

3. Technical Details: ~60 minutes

4. Class Feedback: ~15 minutes

class

x

paper

x-1

(flexible)

Format Of Class

13

Your Responsibilities

1. Fill out form of top 3 papers after shopping
(need Sep 20, 27 speakers now)

2. Read your assigned paper

3. Prepare talk on paper + 6 questions

4. Practice (first half of) talk with me week before

5. Actively participate / give feedback after talks

Grading

14

• 90% presentations (rubric online)

• 10% in-class participation

Format Of Class

15

Disclaimer: A Theory Class

• All proof-based; very technical papers

• Pre-reqs:

• Only official: 155 or 157

• Mathematical maturity

• Familiarity with (graph) algorithms useful

• Relevant background for papers on website

• Ask me if not sure about pre-reqs

∑

Learning Goals

16

• Aimed at current / possible (theory) grad students

• Experience with:

• Reading theory (research papers)

• Presenting theory (research papers)

• Listening to theory (research)

Snacks

17

• I’m planning on bringing snacks (of fruit variety)

• Let me know if you have allergies

18

Papers Overview

Papers Overview

19

Sparsification of Five Graph-Theoretic Objects

Distances Cuts/Flows

Matchings Colorings

Fractional Opts

Structure sparsification

Papers Overview
Distance Sparsification

Edge sparsification

Node sparsification
graph H = (V′￼ ⊆ V, E′￼)

 on dH ≈ dG V′￼

graph H = (V, E′￼ ⊆ E)
dH ≈ dG

random tree T = (V, E′￼)
𝔼[dT] ≈ dG

(spanners)

(Steiner Point Removal)

(Tree Embeddings)

1

2

4

3

graph G = (,)V E

Structure sparsification

Papers Overview
Distance Sparsification

Edge sparsification

Node sparsification
graph H = (V′￼ ⊆ V, E′￼)

 on dH ≈ dG V′￼

graph H = (V, E′￼ ⊆ E)
dH ≈ dG

random tree T = (V, E′￼)
𝔼[dT] ≈ dG

(spanners)

(Steiner Point Removal)

(Tree Embeddings)

1

2

4

3

graph G = (,)V E

Papers Overview
Paper 2: Steiner Point Removal

graph G = (,)V E
terminals T ⊆ V s.t. on dH ≈ dG T

graph H = (T, E′￼, w)

Goal: approximate distances on vertex subset

Trivial as stated!

Papers Overview
Paper 2: Steiner Point Removal

graph G = (,)V E

d(u, v)

Trivial as stated!

terminals T ⊆ V s.t. on dH ≈ dG T
graph H = (T, E′￼, w)

Goal: approximate distances on vertex subset

Papers Overview
Paper 2: Steiner Point Removal

graph G = (,)V E
that preserves ’s ``structure’’

 (i.e. is a minor)
G

s.t. on dH ≈ dG T

graph H = (T, E′￼, w)
terminals T ⊆ V

Papers Overview
Paper 2: Steiner Point Removal

Theorem: given and , there is an edge-weighted minor s.t.G = (V, E) T ⊆ V H
dG(u, v) ≤ dH(u, v) ∀u, v ∈ T|) ⋅ dG(u, v)T≤ O(log |

Structure sparsification

Papers Overview
Distance Sparsification

Edge sparsification

Node sparsification
graph H = (V′￼ ⊆ V, E′￼)

 on dH ≈ dG V′￼

graph H = (V, E′￼ ⊆ E)
dH ≈ dG

random tree T = (V, E′￼)

(spanners)

(Steiner Point Removal)

(Tree Embeddings)

1

2

4

3

graph G = (,)V E 𝔼[dT] ≈ dG

Structure sparsification

Papers Overview
Distance Sparsification

Edge sparsification

Node sparsification
graph H = (V′￼ ⊆ V, E′￼)

 on dH ≈ dG V′￼

graph H = (V, E′￼ ⊆ E)
dH ≈ dG

random tree T = (V, E′￼)

(spanners)

(Steiner Point Removal)

(Tree Embeddings)

1

2

4

3

graph G = (,)V E 𝔼[dT] ≈ dG

Goal: random low diameter partition with small separation probability

Papers Overview
Paper 3: CKR Cutting Scheme

• Partition vertices into sets

• A tradeoff between

• Low diameter

• Low separation

chances in different

V V1, V2, …

max
i

max
u,v∈Vi

dG(u, v)

u, v Vi

Goal: random low diameter partition with small separation probability

Papers Overview
Paper 3: CKR Cutting Scheme

• Partition vertices into sets

• A tradeoff between

• Low diameter

• Low separation

chances in different

V V1, V2, …

max
i

max
u,v∈Vi

dG(u, v)

u, v Vi

Papers Overview
Paper 3: CKR Cutting Scheme

Goal: random low diameter partition with small separation probability

• Consider partitioning path into -diameter parts

• Randomly shift partition by

Δ

U[Δ]

+2

Papers Overview
Paper 3: CKR Cutting Scheme

Goal: random low diameter partition with small separation probability

• Consider partitioning path into -diameter parts

• Randomly shift partition by

Δ

U[Δ]

Pr(u, v separated) ≤
d(u, v)

Δ
∀u, v

Papers Overview
Paper 3: CKR Cutting Scheme

Theorem: given graph and diameter there exists a
distribution over -diameter partitions s.t.

G Δ
Δ

∀u, v ∈ VPr(u, v separated) ≤

(and applications in the ``0-extension’’ problem)

O(log n) ⋅
dG(u, v)

Δ

Structure sparsification

Papers Overview
Distance Sparsification

Edge sparsification

Node sparsification
graph H = (V′￼ ⊆ V, E′￼)

 on dH ≈ dG V′￼

graph H = (V, E′￼ ⊆ E)
dH ≈ dG

random tree T = (V, E′￼)

(spanners)

(Steiner Point Removal)

(Tree Embeddings)

1

2

4

3

graph G = (,)V E 𝔼[dT] ≈ dG

Structure sparsification

Papers Overview
Distance Sparsification

Edge sparsification

Node sparsification
graph H = (V′￼ ⊆ V, E′￼)

 on dH ≈ dG V′￼

graph H = (V, E′￼ ⊆ E)
dH ≈ dG

random tree T = (V, E′￼)

(spanners)

(Steiner Point Removal)

(Tree Embeddings)

1

2

4

3

graph G = (,)V E 𝔼[dT] ≈ dG

Papers Overview
Paper 4: Tree Embeddings

?

What’s the shortest path?u → v

u

v

u

v

What’s the shortest path?u → v

Papers Overview
Paper 4: Tree Embeddings

Goal: approximate arbitrary graph distances by a tree

graph G = (V, E) tree T = (V, E′￼, w)

dG(u, v) ≤ dT(u, v) ≤ α ⋅ dG(u, v)

∀u, v ∈ V

Papers Overview
Paper 4: Tree Embeddings

graph G = (V, E) tree T = (V, E′￼, w)

dG(u, v) ≤ dT(u, v) ≤ α ⋅ dG(u, v)

∀u, v ∈ V

No hope for a

 single (spanning) tree!

Goal: approximate arbitrary graph distances by a tree

Papers Overview
Paper 4: Tree Embeddings

graph G = (V, E) tree T = (V, E′￼, w)

dG(u, v) ≤ dT(u, v) ≤ α ⋅ dG(u, v)

∀u, v ∈ V

Goal: approximate arbitrary graph distances by a tree

Papers Overview
Paper 4: Tree Embeddings

graph G = (V, E) tree T = (V, E′￼, w)

dG(u, v) ≤ dT(u, v) ≤ α ⋅ dG(u, v)

∀u, v ∈ V

Goal: approximate arbitrary graph distances by a tree

Papers Overview
Paper 4: Tree Embeddings

graph G = (V, E) tree T = (V, E′￼, w)

dG(u, v) ≤ dT(u, v) ≤ α ⋅ dG(u, v)

∀u, v ∈ V

Goal: approximate arbitrary graph distances by a tree

Papers Overview
Paper 4: Tree Embeddings

graph G = (V, E) tree T = (V, E′￼, w)

dG(u, v) ≤ dT(u, v) ≤ α ⋅ dG(u, v)

∀u, v ∈ V

Goal: approximate arbitrary graph distances by a tree

Papers Overview
Paper 4: Tree Embeddings

graph G = (V, E) distribution on tree T

dG(u, v) ≤ 𝔼T[dT(u, v)] ≤ α ⋅ dG(u, v)

∀u, v ∈ V

Goal: approximate arbitrary graph distances by a tree

Papers Overview
Paper 4: Tree Embeddings

Theorem: Given graph , a distribution over trees on on s.t.

1. and

2.

G = (V, E) ∃ 𝒯 V

dG(u, v) ≤ dT(u, v) ∀T ∈ 𝒯 u, v ∈ V

𝔼T∼𝒯[dT(u, v)] ≤ O(log n) ⋅ dG(u, v) ∀u, v ∈ V

(countless applications)

Uses CKR

Cutting Scheme

3

Structure sparsification

Papers Overview
Distance Sparsification

Edge sparsification

Node sparsification
graph H = (V′￼ ⊆ V, E′￼)

 on dH ≈ dG V′￼

graph H = (V, E′￼ ⊆ E)
dH ≈ dG

random tree T = (V, E′￼)

(spanners)

(Steiner Point Removal)

(Tree Embeddings)

1

2

4

3

graph G = (,)V E 𝔼[dT] ≈ dG

Structure sparsification

Papers Overview
Distance Sparsification

Edge sparsification

Node sparsification
graph H = (V′￼ ⊆ V, E′￼)

 on dH ≈ dG V′￼

graph H = (V, E′￼ ⊆ E)
dH ≈ dG

random tree T = (V, E′￼)

(spanners)

(Steiner Point Removal)

(Tree Embeddings)

1

2

4

3

graph G = (,)V E 𝔼[dT] ≈ dG

Papers Overview

46

Distances Cuts/Flows

Matchings Colorings

Fractional Opts

Sparsification of Five Graph-Theoretic Objects

Papers Overview

47

Distances Cuts/Flows

Matchings Colorings

Sparsification of Five Graph-Theoretic Objects

Fractional Opts

Dynamic sparsification

Structure sparsification

Papers Overview
Flow / Cut Sparsification

graph H = (V, E′￼ ⊆ E)
 cuts cutsH ≈ G

tree T = (V, E′￼)
 flows flowsT ≈ G

(Random Sampling)

(Dynamic

Tree Flow Sparsifiers)

5

6

graph G = (,)V E

8

7

tree T = (V, E′￼)
 flows flowsT ≈ G

(Tree Flow Sparsifiers)

Edge sparsification

4

Papers Overview
Background: Cuts

Definition (Cut): any S ⊆ V

graph G = (V, E)

Papers Overview
Background: Cuts

Definition (Edges of Cut): S δ(S) := {(u, v) ∈ E : u ∈ S, v ∉ S}

graph G = (V, E)

Papers Overview
Background: Cuts

Definition (Cut Size): size of cut is S |δ(S) |

graph G = (V, E)

Papers Overview
Paper 5: Sampling-Based Cut Sparsification

graph G = (V, E) sparse subgraph s.t.

H

|δG(S) | ≈ |δH(S) | ∀S ⊆ V

 w/

ingenious

probability

e ∈ H

pe

Goal: sparse (edge-weighted) subgraph approximating all cut sizes

Papers Overview
Paper 5: Sampling-Based Cut Sparsification

sparse subgraph s.t.

H

|δG(S) | ≈ |δH(S) | ∀S ⊆ V

How this sort of thing is usually argued

• A given cut has
 with tiny

probability

• There are only cuts

• By union bound all cuts satisfy
with high prob.

S
|δG(S) | ≉ |δH(S) |

p

k ≪
1
p

S
|δG(S) | ≈ |δH(S) |

Papers Overview
Paper 5: Sampling-Based Cut Sparsification

graph G = (V, E) sparse subgraph s.t.

H

|δG(S) | ≈ |δH(S) | ∀S ⊆ V

Problem: cuts, need absurdly good chance of for each O(2n) |δG(S) | ≈ |δH(S) | S

 w/

(ingenious)

probability

e ∈ H

pe

Papers Overview
Paper 5: Sampling-Based Cut Sparsification

 w/

(ingenious)

probability

e ∈ H

pe

Theorem: for any can choose so with high probability so

1. has edges

2. preserves all cuts up to multiplicative factor

ϵ > 0 pe H
O(n log n/ϵ2)

(1 + ϵ)

(and

applications)

Dynamic sparsification

Structure sparsification

Papers Overview
Flow / Cut Sparsification

graph H = (V, E′￼ ⊆ E)
 cuts cutsH ≈ G

tree T = (V, E′￼)
 flows flowsT ≈ G

(Random Sampling)

(Dynamic

Tree Flow Sparsifiers)

5

6

graph G = (,)V E

8

7

tree T = (V, E′￼)
 flows flowsT ≈ G

(Tree Flow Sparsifiers)

Edge sparsification

4

Dynamic sparsification

Structure sparsification

Papers Overview
Flow / Cut Sparsification

graph H = (V, E′￼ ⊆ E)
 cuts cutsH ≈ G

tree T = (V, E′￼)
 flows flowsT ≈ G

(Random Sampling)

(Dynamic

Tree Flow Sparsifiers)

5

6

graph G = (,)V E

8

7

tree T = (V, E′￼)
 flows flowsT ≈ G

(Tree Flow Sparsifiers)

Edge sparsification

4

Papers Overview
Background: (Multi-Commodity) Flows

Goal: some way of formalizing how to send information in a network

.5

.5
.5

.5

.5 .5
.5

1

1

1
11

1

1

1

Papers Overview
Background: (Multi-Commodity) Flows

• Given:

• Graph

• Vertex “demand” pairs

• Goal:

• Assign “flow values” to each
path so each pair sends 1 flow

• Minimize congestion

G = (V, E)

{(si, ti)}i

fP si − ti
P

:= max
e ∑

P∋e

fP

Optimal Flow Min Cut≈

Can solve in poly-time

Papers Overview

Problem: demands change over time, don’t want to recompute from scratch

Paper 6: Tree Flow Sparsifiers

Papers Overview

Problem: demands change over time, don’t want to recompute from scratch

Paper 6: Tree Flow Sparsifiers

Papers Overview

Problem: demands change over time, don’t want to recompute from scratch

Paper 6: Tree Flow Sparsifiers

Papers Overview

Problem: demands change over time, don’t want to recompute from scratch

Paper 6: Tree Flow Sparsifiers

Papers Overview

Problem: demands change over time, don’t want to recompute from scratch

Paper 6: Tree Flow Sparsifiers

🤔 What if graph

was a tree?🤔

Papers Overview

Problem: demands change over time, don’t want to recompute from scratch

Paper 6: Tree Flow Sparsifiers

🤔 What if graph

was a tree?🤔

Papers Overview

Problem: demands change over time, don’t want to recompute from scratch

Paper 6: Tree Flow Sparsifiers

🤔 What if graph

was a tree?🤔

Papers Overview

Problem: demands change over time, don’t want to recompute from scratch

Paper 6: Tree Flow Sparsifiers

🤔 What if graph

was a tree?🤔

Papers Overview

Problem: demands change over time, don’t want to recompute from scratch

Paper 6: Tree Flow Sparsifiers

🤔 What if graph

was a tree?🤔

Papers Overview

Problem: demands change over time, don’t want to recompute from scratch

Paper 6: Tree Flow Sparsifiers

🤔 What if graph

was a tree?🤔

Papers Overview
Paper 6: Tree Flow Sparsifiers

Theorem(informal): can construct a tree approximating “flow structure”

Uses tree embeddings!
4

Dynamic sparsification

Structure sparsification

Papers Overview
Flow / Cut Sparsification

graph H = (V, E′￼ ⊆ E)
 cuts cutsH ≈ G

tree T = (V, E′￼)
 flows flowsT ≈ G

(Random Sampling)

(Dynamic

Tree Flow Sparsifiers)

5

6

graph G = (,)V E

8

7

tree T = (V, E′￼)
 flows flowsT ≈ G

(Tree Flow Sparsifiers)

Edge sparsification

4

Dynamic sparsification

Structure sparsification

Papers Overview
Flow / Cut Sparsification

graph H = (V, E′￼ ⊆ E)
 cuts cutsH ≈ G

tree T = (V, E′￼)
 flows flowsT ≈ G

(Random Sampling)

(Dynamic

Tree Flow Sparsifiers)

5

6

graph G = (,)V E

8

7

tree T = (V, E′￼)
 flows flowsT ≈ G

(Tree Flow Sparsifiers)

Edge sparsification

4

Papers Overview
Background: Dynamic Algorithms

Problem: demands don’t just change, graph does too

Papers Overview
Background: Dynamic Algorithms

Problem: demands don’t just change, graph does too

Papers Overview
Background: Dynamic Algorithms

Problem: demands don’t just change, graph does too

Papers Overview
Background: Dynamic Algorithms

Problem: demands don’t just change, graph does too

Papers Overview
Background: Dynamic Algorithms

Problem: demands don’t just change, graph does too

Papers Overview
Background: Dynamic Algorithms

Problem: demands don’t just change, graph does too

Papers Overview
Background: Dynamic Algorithms

Problem: demands don’t just change, graph does too

Paper 6 brittle to changes 😭

S

Papers Overview
Background: Expander Graphs

• A ``well-connected’’ graph

• Conductance of cut is

• Conductance of graph is

• is a -expander if

S ⊆ V

G = (V, E)

G = (V, E) ϕ ϕG ≥ ϕ

where vol(S) := ∑
v∈S

deg(v)

 ϕG := min
S⊆V

ϕ(S)

 := ϕ(S) |δ(S) | / vol(S)

Papers Overview
Paper 7: Expander Decompositions

Theorem(informal): ”most” of a graph can be decomposed into expanders

Papers Overview
Paper 7: Expander Decompositions

Very Hot Area

of Algorithms

Theorem: vertices can be partitioned into s.t.

1. is a expander

2. at most edges “cut”

V1, V2, …
G[Vi] ϕ−

O(ϕ ⋅ log n ⋅ m)

Papers Overview
Paper 7: Expander Decompositions

Dynamic Tree Flow

Sparsifiers?

Theorem: vertices can be partitioned into s.t.

1. is a expander

2. at most edges “cut”

V1, V2, …
G[Vi] ϕ−

O(ϕ ⋅ log n ⋅ m)

Dynamic sparsification

Structure sparsification

Papers Overview
Flow / Cut Sparsification

graph H = (V, E′￼ ⊆ E)
 cuts cutsH ≈ G

tree T = (V, E′￼)
 flows flowsT ≈ G

(Random Sampling)

(Dynamic

Tree Flow Sparsifiers)

5

6

graph G = (,)V E

8

7

tree T = (V, E′￼)
 flows flowsT ≈ G

(Tree Flow Sparsifiers)

Edge sparsification

4

Dynamic sparsification

Structure sparsification

Papers Overview
Flow / Cut Sparsification

graph H = (V, E′￼ ⊆ E)
 cuts cutsH ≈ G

tree T = (V, E′￼)
 flows flowsT ≈ G

(Random Sampling)

(Dynamic

Tree Flow Sparsifiers)

5

6

graph G = (,)V E

8

7

tree T = (V, E′￼)
 flows flowsT ≈ G

(Tree Flow Sparsifiers)

Edge sparsification

4

S

S̄

a low conductance cut

Intuition 1: expansion has something to do with flows

Papers Overview
Paper 8: Dynamic Tree Flow Sparsifiers (The Expander Hierarchy)

Many Edges
Few Edges

Expander

iff

low congestion flow

Intuition 2: expanders are robust to edge deletions

Papers Overview

the most expandy expander

Paper 8: Dynamic Tree Flow Sparsifiers (The Expander Hierarchy)

Intuition 2: expanders are robust to edge deletions

Papers Overview

the most expandy expander

Paper 8: Dynamic Tree Flow Sparsifiers (The Expander Hierarchy)

Papers Overview

Theorem: vertices can be partitioned into s.t.

1. is a expander

2. at most edges “cut”

V1, V2, …
G[Vi] ϕ−

O(ϕ ⋅ log n ⋅ m)

Paper 8: Dynamic Tree Flow Sparsifiers (The Expander Hierarchy)

7

Theorem(informal): can construct a tree flow sparsifier robust to changes
that is a hierarchy of expander decompositions by intuitions 1+2

Papers Overview

…

Paper 8: Dynamic Tree Flow Sparsifiers (The Expander Hierarchy)

Papers Overview
Paper 8: Dynamic Tree Flow Sparsifiers (The Expander Hierarchy)

Theorem(informal): can efficiently maintain a tree flow sparsifier under changes

Papers Overview
Paper 8: Dynamic Tree Flow Sparsifiers (The Expander Hierarchy)

Theorem(informal): can efficiently maintain a tree flow sparsifier under changes

Papers Overview
Paper 8: Dynamic Tree Flow Sparsifiers (The Expander Hierarchy)

Theorem(informal): can efficiently maintain a tree flow sparsifier under changes

Papers Overview
Paper 8: Dynamic Tree Flow Sparsifiers (The Expander Hierarchy)

Theorem(informal): can efficiently maintain a tree flow sparsifier under changes

Papers Overview

95

Distances Cuts/Flows

Matchings Colorings

Sparsification of Five Graph-Theoretic Objects

Fractional Opts

Papers Overview

96

Distances Cuts/Flows

Matchings Colorings

Sparsification of Five Graph-Theoretic Objects

Fractional Opts

Papers Overview
Background: Matching Theory

Definition: a matching of a graph is a subset of endpoint-disjoint edges

matching not a

matching

Papers Overview
Background: Matching Theory

Definition: the max matching is the matching with the most edges

not a max

 matching

a max

matching

Papers Overview

• Flexible model

ads -> users

doctors -> hospitals

• Mathematically deep

matching

Background: Matching Theory
buy!

Papers Overview
Paper 9: Matching Sparsification

Goal: efficiently maintain near-max-matching dynamically

Papers Overview
Paper 9: Matching Sparsification

Goal: efficiently maintain near-max-matching dynamically

Papers Overview
Paper 9: Matching Sparsification

Goal: efficiently maintain near-max-matching dynamically

Papers Overview
Paper 9: Matching Sparsification

Goal: efficiently maintain near-max-matching dynamically

Papers Overview
Paper 9: Matching Sparsification

graph the max matching

Sub-Goal: a sparse robust subgraph ~preserving the max matching value

Papers Overview
Paper 9: Matching Sparsification

graph the max matching

Sub-Goal: a sparse robust subgraph ~preserving the max matching value

Papers Overview
Paper 9: Matching Sparsification

graph the max matching

Not Robust!

Sub-Goal: a sparse robust subgraph ~preserving the max matching value

Papers Overview
Paper 9: Matching Sparsification

edge-degree-constrained

subgraph

graph

Sub-Goal: a sparse robust subgraph ~preserving the max matching value

Papers Overview
Paper 9: Matching Sparsification

edge-degree-constrained

subgraph

graph

Theorem 1(informal): can maintain a sparse subgraph
that preserves the maximum matching≈ 3/2

Theorem 2: can maintain a -approximate matching
in amortized time per edge change

≈ 3/2
≈ m1/4

Papers Overview
Paper 9: Matching Sparsification

edge-degree-constrained

subgraph

graph

Papers Overview

110

Distances Cuts/Flows

Matchings Colorings

Sparsification of Five Graph-Theoretic Objects

Fractional Opts

Papers Overview

111

Distances Cuts/Flows

Matchings Colorings

Sparsification of Five Graph-Theoretic Objects

Fractional Opts

Papers Overview
Background: Graph Colorings

Definition (coloring): a coloring of a graph is an assignment of
colors to vertices such that no edge has 2 of the same color

Papers Overview
Background: Graph Colorings

Definition (coloring): a coloring of a graph is an assignment of
colors to vertices such that no edge has 2 of the same color

coloring not a coloring

Papers Overview
Background: Graph Colorings

Theorem (folklore): every graph has a coloringΔ + 1

max degreeΔ =

coloring not a coloring

Papers Overview
Background: Graph Colorings

Theorem (folklore): every graph has a coloringΔ + 1

max degreeΔ =

Proof by greedy algorithm

coloring not a coloring

Papers Overview
Background: Graph Colorings

Theorem (folklore): every graph has a coloringΔ + 1

max degreeΔ =

Proof by greedy algorithm

Papers Overview
Background: Graph Colorings

Theorem (folklore): every graph has a coloringΔ + 1

max degreeΔ =

Proof by greedy algorithm

Papers Overview
Background: Graph Colorings

Theorem (folklore): every graph has a coloringΔ + 1

max degreeΔ =

Proof by greedy algorithm

Papers Overview
Background: Graph Colorings

Theorem (folklore): every graph has a coloringΔ + 1

max degreeΔ =

Proof by greedy algorithm

Papers Overview
Background: Graph Colorings

Theorem (folklore): every graph has a coloringΔ + 1

max degreeΔ =

Proof by greedy algorithm

Papers Overview
Background: Graph Colorings

Theorem (folklore): every graph has a coloringΔ + 1

max degreeΔ =

Proof by greedy algorithm

Papers Overview
Background: Graph Colorings

Theorem (folklore): every graph has a coloringΔ + 1

max degreeΔ =

Proof by greedy algorithm

Papers Overview
Background: Graph Colorings

Theorem (folklore): every graph has a coloringΔ + 1

max degreeΔ =

Proof by greedy algorithm

Papers Overview
Background: Graph Colorings

Theorem (folklore): every graph has a coloringΔ + 1

max degreeΔ =

Proof by greedy algorithm

Papers Overview
Background: Graph Colorings

Theorem (folklore): every graph has a coloringΔ + 1

max degreeΔ =

Proof by greedy algorithm

Papers Overview
Background: Graph Colorings

Theorem (folklore): every graph has a coloringΔ + 1

max degreeΔ =

Proof by greedy algorithm

Papers Overview

Theorem (folklore): every graph has a coloringΔ + 1

max degreeΔ =

Proof by greedy algorithm

Background: Graph Colorings

Papers Overview

Theorem (folklore): every graph has a coloringΔ + 1

max degreeΔ =

Proof by greedy algorithm

Background: Graph Colorings

Papers Overview

Theorem (folklore): every graph has a coloringΔ + 1

max degreeΔ =

Proof by greedy algorithm

Background: Graph Colorings

Papers Overview

Theorem (folklore): every graph has a coloringΔ + 1

max degreeΔ =

Proof by greedy algorithm

Background: Graph Colorings

Papers Overview

Theorem (folklore): every graph has a coloringΔ + 1

max degreeΔ =

Proof by greedy algorithm

Background: Graph Colorings

Papers Overview

Theorem (folklore): every graph has a coloringΔ + 1

max degreeΔ =

Proof by greedy algorithm

Background: Graph Colorings

Papers Overview

Theorem (folklore): every graph has a coloringΔ + 1

max degreeΔ =

Proof by greedy algorithm

Background: Graph Colorings

Papers Overview

Theorem (folklore): every graph has a coloringΔ + 1

max degreeΔ =

Proof by greedy algorithm

Background: Graph Colorings

Papers Overview

Theorem (folklore): every graph has a coloringΔ + 1

max degreeΔ =

Proof by greedy algorithm

Background: Graph Colorings

Papers Overview

Theorem (folklore): every graph has a coloringΔ + 1

max degreeΔ =

Proof by greedy algorithm

Background: Graph Colorings

Papers Overview

Theorem (folklore): every graph has a coloringΔ + 1

max degreeΔ =

Proof by greedy algorithm

Background: Graph Colorings

Papers Overview

Theorem (folklore): every graph has a coloringΔ + 1

max degreeΔ =

Proof by greedy algorithm

Background: Graph Colorings

Papers Overview

Theorem (folklore): every graph has a coloringΔ + 1

max degreeΔ =

Proof by greedy algorithm

Background: Graph Colorings

Papers Overview

Theorem (folklore): every graph has a coloringΔ + 1

max degreeΔ =

Proof by greedy algorithm

Background: Graph Colorings

Papers Overview

Theorem (folklore): every graph has a coloringΔ + 1

max degreeΔ =

Proof by greedy algorithm

Background: Graph Colorings

Papers Overview

Theorem (folklore): every graph has a coloringΔ + 1

max degreeΔ =

Proof by greedy algorithm

Background: Graph Colorings

Papers Overview

Theorem (folklore): every graph has a coloringΔ + 1

max degreeΔ =

Proof by greedy algorithm

Background: Graph Colorings

Papers Overview

Theorem (folklore): every graph has a coloringΔ + 1

max degreeΔ =

Proof by greedy algorithm

Background: Graph Colorings

Papers Overview

Theorem (folklore): every graph has a coloringΔ + 1

max degreeΔ =

Proof by greedy algorithm

Background: Graph Colorings

Papers Overview

Theorem (folklore): every graph has a coloringΔ + 1

max degreeΔ =

Proof by greedy algorithm

Background: Graph Colorings

Papers Overview

Theorem (folklore): every graph has a coloringΔ + 1

max degreeΔ =

Proof by greedy algorithm

Background: Graph Colorings

Papers Overview

Theorem (folklore): can color a graph if every vertex
has a “palette” of colorsΔ + 1

max degreeΔ =

Background: Graph Colorings

Papers Overview

Theorem: can color a graph if each vertex samples a
palette of size from colorsΩ(log n) Δ + 1

max degreeΔ =

Paper 10: Palette Sparsification

Papers Overview

Theorem(informal): can efficiently color a graph in
many models of computation

max degreeΔ =

Paper 10: Palette Sparsification

Papers Overview

151

Distances Cuts/Flows

Matchings Colorings

Sparsification of Five Graph-Theoretic Objects

Fractional Opts

Papers Overview

152

Distances Cuts/Flows

Matchings Colorings

Sparsification of Five Graph-Theoretic Objects

Fractional Opts

Papers Overview
Background: Survivable Network Design

graph G = (V, E, w)

Goal: efficiently find subset of min-weight subgraph satisfying cut constraints

E.g.
|δ(S) | ≥ 1
∀S ⊂ V

MST ∈ P

Papers Overview
Background: Survivable Network Design

graph G = (V, E, w)

E.g.
|δ(S) | ≥ 1
∀S ⊂ V

MST ∈ P

Goal: efficiently find subset of min-weight subgraph satisfying cut constraints

Papers Overview
Background: Survivable Network Design

graph G = (V, E, w)

E.g.
|δ(S) | ≥ 2
∀S ⊂ V

2EC NP-Hard

Goal: efficiently find subset of min-weight subgraph satisfying cut constraints

Papers Overview

solve problem “fractionally”

Background: Linear Relaxations

Goal: efficiently find subset of min-weight subgraph satisfying cut constraints

Papers Overview

solve problem “fractionally”
∈ P

use structure

“integral” solution

Background: Linear Relaxations

Goal: efficiently find subset of min-weight subgraph satisfying cut constraints

Papers Overview

solve problem “fractionally”
∈ P

use sparsity

“integral” solution

Background: Linear Relaxations

Goal: efficiently find subset of min-weight subgraph satisfying cut constraints

Papers Overview

solve problem “fractionally”

Theorem 1: for a general class of ND problems, can always
compute optimal fractional solution with support size O(n)

use sparsity

“integral” solution

Paper 11: Survivable Network Design

Cool application of LA to

 combinatorial problem!

Papers Overview

solve problem “fractionally”

Theorem 2: poly-time -approximation for a general class of ND problems2

use sparsity

“integral” solution

Paper 11: Survivable Network Design

Cool application of LA to

 combinatorial problem!

Papers Overview
Paper 12: Bounded Degree Spanning Trees

solve problem “fractionally”

use sparsity

“integral” solution

Theorem 1: for a general class of ND problems, can always compute
optimal fractional solution with arboricity (i.e. everywhere sparse)O(1)

Papers Overview
Paper 12: Bounded Degree Spanning Trees

solve problem “fractionally”

use sparsity

“integral” solution

Theorem 2: +2 approximation to degree-bounded spanning tree problem

Most aesthetic paper

Papers Overview

163

Distances Cuts/Flows

Matchings Colorings

Sparsification of Five Graph-Theoretic Objects

Fractional Opts

Fractional Opts

Papers Overview

164

Distances Cuts/Flows

Matchings Colorings

Sparsification of Five Graph-Theoretic Objects

Summary
• Coming up:

• Next week is me (how to read, present, listen to theory and spanners)

• Following (Sep. 20) is first student talk

• Will send form with paper preferences for remaining papers after shopping

• Responsibilities:

1. Fill out form of top 3 papers (need Sep 20, 27 ASAP)

2. Read your assigned paper

3. Prepare talk on paper + 6 questions

4. Practice (first half of) talk with me week before

5. Actively participate and give feedback at end of talk

Hard Easy

 SolH SolG

sparsify G

apply algorithm

