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Graph Algorithms

Why Study Graph (Algorithms)?

® General

® Computationally tractable

EXP

NP co-NP
(many) graph

/ problems

P




n:=|V|andm:=|E]

Graph Algorithms

Why Study Graph Distance (Algorithms)?

® General

® Computationally tractable

d-(u,v) tor all u, v
in O (n-m)time graph G = (V,E)

(dG(ua V) — 5)

d-(u,v) ;= min{ | P| : path P from u to v}
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Class Topic

Graph Sparsification

>

graph G = (V,E) simple representation H
of some property of G

Focus: graph sparsification
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Class Topic

Graph Distance Sparsification

>

graph G = (V,E) spanning tree H

Focus: graph sparsification
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Why Study Sparsification?

Theme 1: Sparsification Helps Algorithms

What's the u — v shortest path? What's the u — v shortest path?

Focus: graph sparsification
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Challenges of Sparsification

Theme 2: Approximation Helps Sparsification

* do(u,v) =n-—1

graph G = (V,E) spanning tree H

Focus: graph sparsification
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Challenges of Sparsification

Theme 2: Approximation Helps Sparsification

>

graph G = (V,E) spanning tree H
s.t. dy ~ d

Focus: graph sparsification

8



How To Solve Your Favorite Graph Problem

sparsity Gto H
Hard Problem | (Theme 2) Easy Problem
on G on H

apply algorithm (Theme 1)

convert

Solution solution Solution
on G on H

Focus: graph sparsification
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Format Of Class

Seminar Format

® 11 (remaining) classes
® 1 paper/ class (papers already chosen by me)
® First 2 classes by me

® For other classes 1-2 students present / class

class class class class class class class class class class class class

1 2 3 4 5 6 7 8 9 10 11 12

A A A A A A A A A A A

today Paper paper pPaper paper paper paper pPaper Paper paper paper pPaper
1 2 3 4 5 6 7 8 9 10 11

B ONE SRS AR
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Format Of Class

Class Format

1. Introduction: ~30 minutes

class

X

2. Break: ~20 minutes

3. Technical Details: ~60 minutes

4. Class Feedback: ~15 minutes

(flexible)
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Format Of Class

Your Responsibilities

1. Fill out form of top 3 papers after shopping
(need Sep 20, 27 speakers now)

2. Read your assigned paper
3. Prepare talk on paper + 6 questions
4. Practice (first halt of) talk with me week before

5. Actively participate / give feedback after talks
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Grading

® 90% presentations (rubric online)

¢ 10% in-class participation
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Format Of Class

Disclaimer: A Theory Class

® All prootf-based; very technical papers
® Pre-regs:
® Only ofticial: 155 or 157
® Mathematical maturity
® Familiarity with (graph) algorithms useful
® Relevant background for papers on website

® Ask me if not sure about pre-regs
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Learning Goals

® Aimed at current/ possible (theory) grad students
® Experience with:

® Reading theory (research papers)
® Presenting theory (research papers)

® | istening to theory (research)
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Snacks

® I'm planning on bringing snacks (of fruit variety)

® | et me know if you have allergies

17



Papers Overview



Papers Overview
Sparsification of Five Graph-Theoretic Objects

Distances @ Cuts/Flows

Colorings %
Fractional Opts %

19

Matchings




Edge sparsitication

Papers Overview graph H = (V,E' C E)

‘ dy ~ dg

(spanners)

Distance Sparsification

Node sparsification
graph H= (V' C V,E’)
dy =~ d;onV’

(Steiner Point Removal)

Structure sparsification

‘ random tree T = (V, E’)

graph G = (V,E)

(Tree Embeddings)
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Papers Overview

Paper 2: Steiner Point Removal Trivial as stated!

@
@
@
@
graph G = (V,E) graph H = (T, E’, w)
terminals T C 'V st.dy~d;onT

Goal: approximate distances on vertex subset



Papers Overview

Paper 2: Steiner Point Removal Trivial as stated!

d(u,v)

graph G = (V,E) graph H = (T, E’, w)
terminals T C 'V st.dy~d;onT

Goal: approximate distances on vertex subset



Papers Overview

Paper 2: Steiner Point Removal

graph G = (V,E) graph H = (T, E’, w)
terminals T CV that preserves G's “structure”

(i.e. s a minor)
st.dy~d,onT



Papers Overview

Paper 2: Steiner Point Removal

>

Theorem: given G = (V,E) and 7' C V, there is an edge-weighted minor H s.t.
do(u,v) < dy(u,v) < 0Olog| 7)) - d-(u,v)



Edge sparsitication
Papers Overview ‘ﬁra/oh H=(V.E'CE)
Distance Sparsification dy = dg
(spanners)
Node sparsification
graph H= (V' C V,E’)
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Edge sparsitication

fraph H=(V,E'CE)
dy ~ dg

(spanners)

Node sparsification
{;raph H=(V CV,E
dy =~ d;onV’

(Steiner Point Removal)

Papers Overview

Distance Sparsification

Structure sparsification

‘ randomtree T'= (V, E’)

graph G = (V,E)

(Tree Embeddings)



Papers Overview
Paper 3: CKR Cutting Scheme

® Partition vertices Vintosets V|, V,, ...

® A tradeoft between

® | ow diameter

® | ow separation

Goal: random low diameter partition with small separation probability
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Papers Overview
Paper 3: CKR Cutting Scheme ) *

® Consider partitioning path into A-diameter parts

® Randomly shift partition by U[A]

Goal: random low diameter partition with small separation probability



Papers Overview
Paper 3: CKR Cutting Scheme

® Consider partitioning path into A-diameter parts

® Randomly shift partition by U[A]

d(u,v)

Pr(u, v separated) < x

Goal: random low diameter partition with small separation probability



Papers Overview
Paper 3: CKR Cutting Scheme

Theorem: given graph G and diameter A there exists a
distribution over A-diameter partitions s.t.
d-(u,v)

A

Pr(u, v separated) < O(logn) -

(and applications in the "0-extension” problem)



Edge sparsitication

fraph H=(V,E'CE)
dy ~ dg

(spanners)

Node sparsification
{;raph H=(V CV,E
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(Steiner Point Removal)
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Papers Overview
Paper 4: Tree Embeddings

What's the u — v shortest path? What's the u — v shortest path?



Papers Overview
Paper 4: Tree Embeddings

graph G = (V,E) tree T = (V,E',w)
do(u,v) < dp(u,v) < a-ds(u,v)

Goal: approximate arbitrary graph distances by a tree



Pa pers Overview No hope for a

Paper 4: Tree Embeddings single (spanning) tree!

graph G = (V,E) tree T = (V,E',w)
do(u,v) < dp(u,v) < a-ds(u,v)

Goal: approximate arbitrary graph distances by a tree
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Papers Overview
Paper 4: Tree Embeddings

graph G = (V,E) distribution on tree T
dG(ua V) S _T[dT(ua V)] S - dG(ua V)

Goal: approximate arbitrary graph distances by a tree



Papers Overview

Paper 4: Tree Embeddings
Uses CKR
Cutting Scheme

Theorem: Given graph G = (V, E), d a distribution & over trees on V on s.t.

1. d(u,v) < di(u,v) (countless applications)

2. B _gldr(u,v)] < O(ogn) - ds(u,v)



Edge sparsitication

fraph H=(V,E'CE)
dy ~ dg

(spanners)

Node sparsification
{;raph H=(V CV,E
dy =~ d;onV’

(Steiner Point Removal)

Papers Overview
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Structure sparsification

‘ randomtree T'= (V, E’)

graph G = (V,E)
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Edge sparsitication

fraph H=(V,E'CE)
dy ~ dg

(spanners)

Node sparsification
%;raph H=(V CV,E
dy =~ d;onV’
(Steiner Point Removal)
Stsucture sparsification
{andom tree T = (V, E")

Papers Overview

Distance Sparsification

graph G = (V,E)

(Tree Embeddings)
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Edge sparsitication

Papers Overview graph H = (V,E' C E)

Flow / Cut Sparsification

(Random Sampling)

Structure sparsification
tree T = (V, E')
‘ T flows ~ G flows

(Tree Flow Sparsifiers)

Dynamic sparsitfication
tree T = (V, E)

T flows ~ G flows
(Dynamic

Tree Flow Sparsifiers)

graph G = (V,E)




Papers Overview
Background: Cuts

graph G = (V, E)

Definition (Cut):any S C V



Papers Overview
Background: Cuts

graph G = (V,E)

Definition (Edges of Cut S): 6(S) :={(u,v) e E:ues,v &S}



Papers Overview
Background: Cuts

graph G = (V,E)

Definition (Cut Size): size of cut S'is [6(S) |



Papers Overview
Paper 5: Sampling-Based Cut Sparsification

>

e € Hw/
Ingenious

\ /
>,

probability p,

graph G = (V, E) sparse subgraph H s.t.
[06(S) | = [04(S)|

Goal: sparse (edge-weighted) subgraph approximating all cut sizes



Papers Overview
Paper 5: Sampling-Based Cut Sparsification

How this sort of thing is usually argued

® A given cut$ has
| 05(8) | % |654(S)| with tiny
probability p

\ /
>,

e |here are only k < — cuts
P

® By union bound all cuts S satisty sparse subgraph H s.t.
|06(5) | = | 05(S) | with high prob. [06(S) | = [0y(S) ]



Papers Overview
Paper 5: Sampling-Based Cut Sparsification

>

e € Hw/
(ingenious)

\/
>,

probability p,

graph G = (V, E) sparse subgraph H s.t.
[06(S) | = [04(S)|

Problem: O(2") cuts, need absurdly good chance of |6,(5)| = | 64(S) |tor each S



Papers Overview
Paper 5: Sampling-Based Cut Sparsification

>

e € Hw/
(ingenious)

\/
>,

probability p,

Theorem: for any € > 0 can choose p, so with high probability so H
1. has O(nlogn/e?) edges

2. preserves all cuts up to (1 + €) multiplicative factor

(and

applications)



Edge sparsitication

Papers Overview graph H = (V,E' C E)

Flow / Cut Sparsification

(Random Sampling)

Structure sparsification
tree T = (V, E')
‘ T flows ~ G flows

(Tree Flow Sparsifiers)

Dynamic sparsitfication
tree T = (V, E)

T flows ~ G flows
(Dynamic

Tree Flow Sparsifiers)

graph G = (V,E)




Edge sparsitication
graph H= (V,E' C E)

H cuts ~ G cuts

Papers Overview

Flow / Cut Sparsification

(Random Sampling)

Structure sparsification
tree T = (V, E')
‘ T flows ~ G flows

(Tree Flow Sparsifiers)

Dynamic sparsitfication
tree T = (V, E)

T flows ~ G flows
(Dynamic

Tree Flow Sparsifiers)

graph G = (V,E)




Papers Overview
Background: (Multi-Commodity) Flows

Goal: some way of formalizing how to send information in a network



Papers Overview

Background: (Multi-Commodity) Flows Optimal Flow ~ Min Cut
e Given:

e Graph G = (V,E)
® Vertex "demand” pairs {(s;, 1)}
e Goal:

® Assign “flow values” f, to each s; — 1,
path P so each pair sends 1 flow

o Minimize congestion := max pr

e
P>e

Can solve in poly-time



Papers Overview

Paper 6: Tree Flow Sparsifiers

Problem: demands change over time, don't want to recompute from scratch
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Papers Overview

Paper 6: Tree Flow Sparsifiers

& What if graph
was a tree?®

Problem: demands change over time, don't want to recompute from scratch



Papers Overview

Paper 6: Tree Flow Sparsifiers

Uses tree embeddings!

>

Theorem(informal): can construct a tree approximating “flow structure”



Edge sparsitication
graph H= (V,E' C E)

H cuts ~ G cuts

Papers Overview

Flow / Cut Sparsification

(Random Sampling)

Structure sparsification
tree T = (V, E')
‘ T flows ~ G flows

(Tree Flow Sparsifiers)

Dynamic sparsitfication
tree T = (V, E)

T flows ~ G flows
(Dynamic

Tree Flow Sparsifiers)

graph G = (V,E)




Edge sparsitication
graph H= (V,E' C E)

H cuts ~ G cuts

Papers Overview

Flow / Cut Sparsification

(Random Sampling)

Structure sparsification

eeT =(V,E
T

flows ~ G flows
(Tree Flow Sparsifiers)

Dynamic sparsitfication
tree T = (V, E)

T flows ~ G flows
(Dynamic

Tree Flow Sparsifiers)

graph G = (V,E)




Papers Overview
Background: Dynamic Algorithms

Problem: demands don't just change, graph does too
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Papers Overview
Background: Dynamic Algorithms

>

Problem: demands don't just change, graph does too



Papers Overview
Background: Dynamic Algorithms

Paper 6 brittle to changes @

>

Problem: demands don't just change, graph does too



Papers Overview
Background: Expander Graphs

® A well-connected” graph

e Conductanceof cut S C Vis
=6(S)| / vol(S)

where vol(S) := Z deg(v)

vesS

e Conductance of graph G = (V,E) is

P = min
SCV

 G=(V,E)is a¢-expander it ¢; > ¢




Papers Overview

Paper 7: Expander Decompositions

Theorem(informal): "most” of a graph can be decomposed into expanders



Papers Overview

Paper 7: Expander Decompositions

Very Hot Area
of Algorithms

Theorem: vertices can be partitioned into V;, V,, ... s.t.
1. GlV.]is a ¢g—expander
2. at most O(¢ - logn - m) edges “cut”



Papers Overview

Paper 7: Expander Decompositions

Dynamic Tree Flow
Sparsifiers?

Theorem: vertices can be partitioned into V;, V,, ... s.t.
1. GlV.]is a ¢g—expander
2. at most O(¢ - logn - m) edges “cut”



Edge sparsitication
graph H= (V,E' C E)

H cuts ~ G cuts

Papers Overview

Flow / Cut Sparsification

(Random Sampling)

Structure sparsification

eeT =(V,E
T

flows ~ G flows
(Tree Flow Sparsifiers)

Dynamic sparsitfication
tree T = (V, E)

T flows ~ G flows
(Dynamic

Tree Flow Sparsifiers)

graph G = (V,E)




Edge sparsitication
graph H= (V,E' C E)

H cuts ~ G cuts

Papers Overview

Flow / Cut Sparsification

(Random Sampling)

Structure sparsification

eeT =(V,E
T

flows ~ G flows
(Tree Flow Sparsifiers)

Dynamic sparsitfication
tree T = (V, E)

T flows ~ G flows
(Dynamic

Tree Flow Sparsifiers)

graph G = (V,E)




Papers Overview

Paper 8: Dynamic Tree Flow Sparsifiers (The Expander Hierarchy)

Expander
iff

/ low congestion flow

Intuition 1: expansion has something to do with flows

a low conductance cut




Papers Overview

Paper 8: Dynamic Tree Flow Sparsifiers (The Expander Hierarchy)

the most expandy expander

Intuition 2: expanders are robust to edge deletions



Papers Overview

Paper 8: Dynamic Tree Flow Sparsifiers (The Expander Hierarchy)

the most expandy expander

Intuition 2: expanders are robust to edge deletions



Papers Overview

Paper 8: Dynamic Tree Flow Sparsifiers (The Expander Hierarchy)

Theorem: vertices can be partitioned into V;, V,, ... s.t.‘
1. GlV.]is a ¢g—expander

2. at most O(¢ - logn - m) edges “cut”



Papers Overview

Paper 8: Dynamic Tree Flow Sparsifiers (The Expander Hierarchy)

oA -

Theorem(informal): can construct a tree flow sparsitier robust to changes
that is a hierarchy of expander decompositions by intuitions 1+2




Papers Overview

Paper 8: Dynamic Tree Flow Sparsifiers (The Expander Hierarchy)

>

Theorem(informal): can efficiently maintain a tree flow sparsifier under changes
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Paper 8: Dynamic Tree Flow Sparsifiers (The Expander Hierarchy)

>

Theorem(informal): can efficiently maintain a tree flow sparsifier under changes
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Papers Overview
Background: Matching Theory

matching not a
matching

Definition: a matching of a graph is a subset of endpoint-disjoint edges



Papers Overview
Background: Matching Theory

not a max a max
matching matching

Definition: the max matching is the matching with the most edges



Papers Overview
Background: Matching Theory

¢ Flexible model

¢ Mathematically deep

matching




Papers Overview
Paper 9: Matching Sparsification

Goal: efficiently maintain near-max-matching dynamically
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Papers Overview
Paper 9: Matching Sparsification

>

graph the max matching

Sub-Goal: a sparse robust subgraph ~preserving the max matching value
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-~

graph the max matching

Sub-Goal: a sparse robust subgraph ~preserving the max matching value



Papers Overview
Paper 9: Matching Sparsification

Not Robust!
¢l

>

graph the max matching

Sub-Goal: a sparse robust subgraph ~preserving the max matching value



Papers Overview
Paper 9: Matching Sparsification

>

graph edge-degree-constrained
subgraph

Sub-Goal: a sparse robust subgraph ~preserving the max matching value



Papers Overview
Paper 9: Matching Sparsification

>

graph edge-degree-constrained
subgraph

Theorem 1(informal): can maintain a sparse subgraph
that =~ 3/2 preserves the maximum matching



Papers Overview
Paper 9: Matching Sparsification

>

graph edge-degree-constrained
subgraph

Theorem 2: can maintain a ~ 3/2-approximate matching
in amortized time ~ m'* per edge change



Papers Overview
Sparsification of Five Graph-Theoretic Objects

Distances V@ Cuts/Flows « W

Colorings %
Fractional Opts %
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Papers Overview
Background: Graph Colorings

Definition (coloring): a coloring of a graph is an assignment of
colors to vertices such that no edge has 2 of the same color
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coloring not a coloring

Definition (coloring): a coloring of a graph is an assignment of
colors to vertices such that no edge has 2 of the same color
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Theorem (folklore): every graph hasa A + 1 coloring
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Papers Overview
Background: Graph Colorings

Theorem (folklore): can color a graph if every vertex
has a "palette” of A + 1 colors
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Papers Overview
Paper 10: Palette Sparsification

Theorem: can color a graph if each vertex samples a
palette of size Q(logn) from A + 1 colors
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Papers Overview
Paper 10: Palette Sparsification

Theorem(informal): can efficiently color a graph in
many models of computation
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Background: Survivable Network Design

E.g. |6(S)| >2

2EC NP-Hard

graph G = (V, E,w)

Goal: efficiently find subset of min-weight subgraph satisfying cut constraints
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solve problem “fractionally”

Goal: efficiently find subset of min-weight subgraph satisfying cut constraints
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Background: Linear Relaxations

use structure

N

solve problem “fractionally” “integral” solution
eP

Goal: efficiently find subset of min-weight subgraph satisfying cut constraints
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Background: Linear Relaxations

use sparsity

N

solve problem “fractionally” “integral” solution
eP

Goal: efficiently find subset of min-weight subgraph satisfying cut constraints



Cool application of LA to
combinatorial problem!

Papers Overview

Paper 11: Survivable Network Design

use sparsity

N

solve problem “fractionally” “integral” solution

Theorem 1: tor a general class of ND problems, can always
compute optimal fractional solution with support size O(n)
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Papers Overview

Paper 11: Survivable Network Design

use sparsity

N

solve problem “fractionally” “integral” solution

Theorem 2: poly-time 2-approximation for a general class of ND problems
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Paper 12: Bounded Degree Spanning Trees

use sparsity

N

solve problem “fractionally” “integral” solution

Theorem 1: tfor a general class of ND problems, can always compute
optimal fractional solution with O(1) arboricity (i.e. everywhere sparse)




Most aesthetic paper

Papers Overview
Paper 12: Bounded Degree Spanning Trees

use sparsity

N

solve problem “fractionally” “integral” solution

Theorem 2: +2 approximation to degree-bounded spanning tree problem
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Summary

e Coming up:

® Next week is me (how to read, present, listen to theory and spanners)
® Following (Sep. 20) is first student talk
e Will send form with paper preferences for remaining papers after shopping
e Responsibilities:
1. Fill out form of top 3 papers (need Sep 20, 27 ASAP)
2. Read your assigned paper
3. Prepare talk on paper + 6 questions
4

. Practice (first half of) talk with me week before

5. Actively participate and give feedback at end of talk
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