Frontiers of Graph Algorithms

Fall 2023

Brown University
https://dhershko.github.io/teaching/fall23Seminar.html

D Ellis Hershkowitz (Ellis)

Graph Algorithms

Why Study Graph (Algorithms)?

- General

$$
\sum=
$$

- Computationally tractable

Graph Algorithms

Why Study Graph Distance (Algorithms)?

- General

- Computationally tractable

$$
\begin{gathered}
d_{G}(u, v) \text { for all } u, v \\
\text { in } O(n \cdot m) \text { time }
\end{gathered}
$$

$$
d_{G}(u, v):=\min \{|P|: \text { path } P \text { from } u \text { to } v\}
$$

Class Topic

Graph Sparsification

$$
\text { graph } G=(V, E)
$$

simple representation H of some property of G

Focus: graph sparsification

Class Topic

Graph Distance Sparsification

Focus: graph sparsification

Why Study Sparsification?

Theme 1: Sparsification Helps Algorithms

What's the $u \rightarrow v$ shortest path?

What's the $u \rightarrow v$ shortest path?

Focus: graph sparsification

Challenges of Sparsification

Theme 2: Approximation Helps Sparsification

spanning tree H

$$
\text { s.t. } d_{H}=d_{G}
$$

Focus: graph sparsification

Challenges of Sparsification

Theme 2: Approximation Helps Sparsification

Focus: graph sparsification

How To Solve Your Favorite Graph Problem

Focus: graph sparsification

Logistics Overview

Format Of Class

Seminar Format

- 11 (remaining) classes
- 1 paper / class (papers already chosen by me)
- First 2 classes by me
- For other classes 1-2 students present / class

Format Of Class

Class Format

1. Introduction: ~30 minutes
2. Break: ~ 20 minutes
3. Technical Details: ~ 60 minutes
4. Class Feedback: ~ 15 minutes

(flexible)

Format Of Class

Your Responsibilities

1. Fill out form of top 3 papers after shopping (need Sep 20, 27 speakers now)
2. Read your assigned paper
3. Prepare talk on paper +6 questions
4. Practice (first half of) talk with me week before
5. Actively participate / give feedback after talks

Grading

- 90\% presentations (rubric online)
- 10\% in-class participation

Format Of Class

Disclaimer: A Theory Class

- All proof-based; very technical papers
- Pre-reqs:
- Only official: 155 or 157
- Mathematical maturity

- Familiarity with (graph) algorithms useful
- Relevant background for papers on website
- Ask me if not sure about pre-reqs

Learning Goals

- Aimed at current / possible (theory) grad students
- Experience with:
- Reading theory (research papers)
- Presenting theory (research papers)

- Listening to theory (research)

Snacks

- I'm planning on bringing snacks (of fruit variety)
- Let me know if you have allergies

Papers Overview

Papers Overview

Sparsification of Five Graph-Theoretic Objects

Cuts/Flows

Colorings

Fractional Opts

Edge sparsification

Papers Overview

Distance Sparsification

$$
d_{H} \approx d_{G}
$$

$$
\text { graph } G=(V, E)
$$

$$
\text { graph } H=\left(V, E^{\prime} \subseteq E\right)
$$

(spanners)

Node sparsification

$$
\begin{aligned}
& \text { graph } H=\left(V^{\prime} \subseteq V, E^{\prime}\right) \\
& d_{H} \approx d_{G} \text { on } V^{\prime}
\end{aligned}
$$

Structure sparsification

Papers Overview

Paper 2: Steiner Point Removal

Trivial as stated!

Papers Overview

Paper 2: Steiner Point Removal

Trivial as stated!

$$
\begin{aligned}
& \text { graph } G=(V, E) \\
& \text { terminals } T \subseteq V
\end{aligned}
$$

graph $H=\left(T, E^{\prime}, w\right)$ s.t. $d_{H} \approx d_{G}$ on T

Goal: approximate distances on vertex subset

Papers Overview

Paper 2: Steiner Point Removal

graph $G=(V, E)$
terminals $T \subseteq V$

graph $H=\left(T, E^{\prime}, w\right)$
that preserves G^{\prime} s "structure"
(i.e. is a minor)
s.t. $d_{H} \approx d_{G}$ on T

Papers Overview

Paper 2: Steiner Point Removal

Theorem: given $G=(V, E)$ and $T \subseteq V$, there is an edge-weighted minor H s.t.

$$
d_{G}(u, v) \leq d_{H}(u, v) \leq O(\log |T|) \cdot d_{G}(u, v) \quad \forall u, v \in T
$$

Papers Overview

Paper 3: CKR Cutting Scheme

- Partition vertices V into sets V_{1}, V_{2}, \ldots
- A tradeoff between
- Low diameter

```
max max d}\mp@subsup{d}{G}{}(u,v
    i u,v\in\mp@subsup{V}{i}{}
```

- Low separation

chances u, v in different V_{i}

Goal: random low diameter partition with small separation probability

Papers Overview

Paper 3: CKR Cutting Scheme

- Partition vertices V into sets V_{1}, V_{2}, \ldots
- A tradeoff between
- Low diameter
$\max \max d_{G}(u, v)$
$i \quad u, v \in V_{i}$
- Low separation

chances u, v in different V_{i}

Goal: random low diameter partition with small separation probability

Papers Overview

Paper 3: CKR Cutting Scheme

- Consider partitioning path into Δ-diameter parts
- Randomly shift partition by $U[\Delta]$

Goal: random low diameter partition with small separation probability

Papers Overview

Paper 3: CKR Cutting Scheme

- Consider partitioning path into Δ-diameter parts
- Randomly shift partition by $U[\Delta]$

$$
\operatorname{Pr}(u, v \text { separated }) \leq \frac{d(u, v)}{\Delta} \forall u, v
$$

Goal: random low diameter partition with small separation probability

Papers Overview

Paper 3: CKR Cutting Scheme

Theorem: given graph G and diameter Δ there exists a distribution over Δ-diameter partitions s.t.

$$
\operatorname{Pr}(u, v \text { separated }) \leq O(\log n) \cdot \frac{d_{G}(u, v)}{\Delta} \forall u, v \in V
$$

(and applications in the "0-extension" problem)

Papers Overview

Paper 4: Tree Embeddings

What's the $u \rightarrow v$ shortest path?

What's the $u \rightarrow v$ shortest path?

Papers Overview

Paper 4: Tree Embeddings

graph $G=(V, E)$

tree $T=\left(V, E^{\prime}, w\right)$

$$
d_{G}(u, v) \leq d_{T}(u, v) \leq \alpha \cdot d_{G}(u, v)
$$

$$
\forall u, v \in V
$$

Goal: approximate arbitrary graph distances by a tree

Papers Overview

Paper 4: Tree Embeddings

graph $G=(V, E)$

No hope for a

 single (spanning) tree!
tree $T=\left(V, E^{\prime}, w\right)$

$$
d_{G}(u, v) \leq d_{T}(u, v) \leq \alpha \cdot d_{G}(u, v)
$$

$$
\forall u, v \in V
$$

Goal: approximate arbitrary graph distances by a tree

Papers Overview

Paper 4: Tree Embeddings

graph $G=(V, E)$

tree $T=\left(V, E^{\prime}, w\right)$

$$
d_{G}(u, v) \leq d_{T}(u, v) \leq \alpha \cdot d_{G}(u, v)
$$

$$
\forall u, v \in V
$$

Goal: approximate arbitrary graph distances by a tree

Papers Overview

Paper 4: Tree Embeddings

graph $G=(V, E)$

tree $T=\left(V, E^{\prime}, w\right)$

$$
d_{G}(u, v) \leq d_{T}(u, v) \leq \alpha \cdot d_{G}(u, v)
$$

$$
\forall u, v \in V
$$

Goal: approximate arbitrary graph distances by a tree

Papers Overview

Paper 4: Tree Embeddings

graph $G=(V, E)$

tree $T=\left(V, E^{\prime}, w\right)$

$$
d_{G}(u, v) \leq d_{T}(u, v) \leq \alpha \cdot d_{G}(u, v)
$$

$$
\forall u, v \in V
$$

Goal: approximate arbitrary graph distances by a tree

Papers Overview

Paper 4: Tree Embeddings

graph $G=(V, E)$

tree $T=\left(V, E^{\prime}, w\right)$

$$
d_{G}(u, v) \leq d_{T}(u, v) \leq \alpha \cdot d_{G}(u, v)
$$

$$
\forall u, v \in V
$$

Goal: approximate arbitrary graph distances by a tree

Papers Overview

Paper 4: Tree Embeddings

graph $G=(V, E)$

distribution on tree T

$$
d_{G}(u, v) \leq \mathbb{E}_{T}\left[d_{T}(u, v)\right] \leq \alpha \cdot d_{G}(u, v)
$$

$$
\forall u, v \in V
$$

Goal: approximate arbitrary graph distances by a tree

Papers Overview

Paper 4: Tree Embeddings

Theorem: Given graph $G=(V, E), \exists$ a distribution \mathscr{T} over trees on V on s.t.

1. $d_{G}(u, v) \leq d_{T}(u, v) \quad \forall T \in \mathscr{T}$ and $u, v \in V \quad$ (countless applications)
2. $\mathbb{E}_{T \sim \mathcal{F}}\left[d_{T}(u, v)\right] \leq O(\log n) \cdot d_{G}(u, v) \quad \forall u, v \in V$

Papers Overview

Sparsification of Five Graph-Theoretic Objects

Cuts/Flows

Colorings

Fractional Opts

Papers Overview

Sparsification of Five Graph-Theoretic Objects

Fractional Opts

Papers Overview

Background: Cuts

Definition (Cut): any $S \subseteq V$

Papers Overview

Background: Cuts

Definition (Edges of Cut S): $\delta(S):=\{(u, v) \in E: u \in S, v \notin S\}$

Papers Overview

Background: Cuts

Papers Overview

Paper 5: Sampling-Based Cut Sparsification

$$
\text { graph } G=(V, E)
$$

sparse subgraph H s.t.

$$
\left|\delta_{G}(S)\right| \approx\left|\delta_{H}(S)\right| \quad \forall S \subseteq V
$$

Goal: sparse (edge-weighted) subgraph approximating all cut sizes

Papers Overview

Paper 5: Sampling-Based Cut Sparsification

How this sort of thing is usually argued

- A given cut S has $\left|\delta_{G}(S)\right| \not \approx\left|\delta_{H}(S)\right|$ with tiny probability p
- There are only $k \ll \frac{1}{p}$ cuts
- By union bound all cuts S satisfy $\left|\delta_{G}(S)\right| \approx\left|\delta_{H}(S)\right|$ with high prob.

sparse subgraph H s.t.
$\left|\delta_{G}(S)\right| \approx\left|\delta_{H}(S)\right| \forall S \subseteq V$

Papers Overview

Paper 5: Sampling-Based Cut Sparsification

sparse subgraph H s.t.

$$
\left|\delta_{G}(S)\right| \approx\left|\delta_{H}(S)\right| \forall S \subseteq V
$$

Problem: $O\left(2^{n}\right)$ cuts, need absurdly good chance of $\left|\delta_{G}(S)\right| \approx\left|\delta_{H}(S)\right|$ for each S

Papers Overview

Paper 5: Sampling-Based Cut Sparsification

Theorem: for any $\epsilon>0$ can choose p_{e} so with high probability so H

1. has $O\left(n \log n / \epsilon^{2}\right)$ edges
2. preserves all cuts up to $(1+\epsilon)$ multiplicative factor
(and applications)

Papers Overview

Background: (Multi-Commodity) Flows

Goal: some way of formalizing how to send information in a network

Papers Overview

Background: (Multi-Commodity) Flows

- Given:
- Graph $G=(V, E)$
- Vertex "demand" pairs $\left\{\left(s_{i}, t_{i}\right)\right\}_{i}$
- Goal:
- Assign "flow values" f_{P} to each $s_{i}-t_{i}$ path P so each pair sends 1 flow
- Minimize congestion $:=\max _{e} \sum_{P \ni e} f_{P}$

Optimal Flow \approx Min Cut

Papers Overview

Paper 6: Tree Flow Sparsifiers

Problem: demands change over time, don't want to recompute from scratch

Papers Overview

Paper 6: Tree Flow Sparsifiers

Problem: demands change over time, don't want to recompute from scratch

Papers Overview

Paper 6: Tree Flow Sparsifiers

Problem: demands change over time, don't want to recompute from scratch

Papers Overview

Paper 6: Tree Flow Sparsifiers

Problem: demands change over time, don't want to recompute from scratch

Papers Overview

Paper 6: Tree Flow Sparsifiers

(3) What if graph was a tree?

Problem: demands change over time, don't want to recompute from scratch

Papers Overview

Paper 6: Tree Flow Sparsifiers

(3) What if graph was a tree? :

Problem: demands change over time, don't want to recompute from scratch

Papers Overview

Paper 6: Tree Flow Sparsifiers

(3) What if graph was a tree?

Problem: demands change over time, don't want to recompute from scratch

Papers Overview

Paper 6: Tree Flow Sparsifiers

(2) What if graph was a tree?

Problem: demands change over time, don't want to recompute from scratch

Papers Overview

Paper 6: Tree Flow Sparsifiers

(2) What if graph was a tree?

Problem: demands change over time, don't want to recompute from scratch

Papers Overview

Paper 6: Tree Flow Sparsifiers

(3) What if graph was a tree?

Problem: demands change over time, don't want to recompute from scratch

Papers Overview

Paper 6: Tree Flow Sparsifiers

Uses tree embeddings!

Theorem(informal): can construct a tree approximating "flow structure"

Papers Overview

Background: Dynamic Algorithms

Problem: demands don't just change, graph does too

Papers Overview

Background: Dynamic Algorithms

Problem: demands don't just change, graph does too

Papers Overview

Background: Dynamic Algorithms

Problem: demands don't just change, graph does too

Papers Overview

Background: Dynamic Algorithms

Problem: demands don't just change, graph does too

Papers Overview

Background: Dynamic Algorithms

Problem: demands don't just change, graph does too

Papers Overview

Background: Dynamic Algorithms

Problem: demands don't just change, graph does too

Papers Overview

Background: Dynamic Algorithms

Paper 6 brittle to changes (6)

Problem: demands don't just change, graph does too

Papers Overview

Background: Expander Graphs

- A "well-connected" graph
- Conductance of cut $S \subseteq V$ is

$$
\begin{gathered}
\phi(S):=|\delta(S)| / \operatorname{vol}(S) \\
\text { where } \operatorname{vol}(S):=\sum_{v \in S} \operatorname{deg}(v)
\end{gathered}
$$

- Conductance of graph $G=(V, E)$ is

$$
\phi_{G}:=\min _{S \subseteq V} \phi(S)
$$

- $G=(V, E)$ is a ϕ-expander if $\phi_{G} \geq \phi$

Papers Overview

Paper 7: Expander Decompositions

Theorem(informal): "most" of a graph can be decomposed into expanders

Papers Overview

Paper 7: Expander Decompositions

Very Hot Area of Algorithms

Theorem: vertices can be partitioned into V_{1}, V_{2}, \ldots s.t.

1. $G\left[V_{i}\right]$ is a ϕ-expander
2. at most $O(\phi \cdot \log n \cdot m)$ edges "cut"

Papers Overview

Paper 7: Expander Decompositions

Dynamic Tree Flow Sparsifiers?

Theorem: vertices can be partitioned into V_{1}, V_{2}, \ldots s.t.

1. $G\left[V_{i}\right]$ is a ϕ-expander
2. at most $O(\phi \cdot \log n \cdot m)$ edges "cut"

Papers Overview

Paper 8: Dynamic Tree Flow Sparsifiers (The Expander Hierarchy)

Papers Overview

Paper 8: Dynamic Tree Flow Sparsifiers (The Expander Hierarchy)

Intuition 2: expanders are robust to edge deletions

Papers Overview

Paper 8: Dynamic Tree Flow Sparsifiers (The Expander Hierarchy)

Intuition 2: expanders are robust to edge deletions

Papers Overview

Paper 8: Dynamic Tree Flow Sparsifiers (The Expander Hierarchy)

Theorem: vertices can be partitioned into V_{1}, V_{2}, \ldots s.t.

1. $G\left[V_{i}\right]$ is a ϕ-expander
2. at most $O(\phi \cdot \log n \cdot m)$ edges "cut"

Papers Overview

Paper 8: Dynamic Tree Flow Sparsifiers (The Expander Hierarchy)

Theorem(informal): can construct a tree flow sparsifier robust to changes that is a hierarchy of expander decompositions by intuitions $1+2$

Papers Overview

Paper 8: Dynamic Tree Flow Sparsifiers (The Expander Hierarchy)

Theorem(informal): can efficiently maintain a tree flow sparsifier under changes

Papers Overview

Paper 8: Dynamic Tree Flow Sparsifiers (The Expander Hierarchy)

Theorem(informal): can efficiently maintain a tree flow sparsifier under changes

Papers Overview

Paper 8: Dynamic Tree Flow Sparsifiers (The Expander Hierarchy)

Theorem(informal): can efficiently maintain a tree flow sparsifier under changes

Papers Overview

Paper 8: Dynamic Tree Flow Sparsifiers (The Expander Hierarchy)

Theorem(informal): can efficiently maintain a tree flow sparsifier under changes

Papers Overview

Sparsification of Five Graph-Theoretic Objects

Papers Overview

Sparsification of Five Graph-Theoretic Objects

Fractional Opts

Papers Overview

Background: Matching Theory

Definition: a matching of a graph is a subset of endpoint-disjoint edges

Papers Overview

Background: Matching Theory

Definition: the max matching is the matching with the most edges

Papers Overview

Background: Matching Theory

- Flexible model

```
ads -> users
doctors -> hospitals
```

- Mathematically deep

matching

Papers Overview

Paper 9: Matching Sparsification

Goal: efficiently maintain near-max-matching dynamically

Papers Overview

Paper 9: Matching Sparsification

Goal: efficiently maintain near-max-matching dynamically

Papers Overview

Paper 9: Matching Sparsification

Goal: efficiently maintain near-max-matching dynamically

Papers Overview

Paper 9: Matching Sparsification

Goal: efficiently maintain near-max-matching dynamically

Papers Overview

Paper 9: Matching Sparsification

Sub-Goal: a sparse robust subgraph ~preserving the max matching value

Papers Overview

Paper 9: Matching Sparsification

Sub-Goal: a sparse robust subgraph ~preserving the max matching value

Papers Overview

Paper 9: Matching Sparsification

Not Robust!

Sub-Goal: a sparse robust subgraph ~preserving the max matching value

Papers Overview

Paper 9: Matching Sparsification

Sub-Goal: a sparse robust subgraph ~preserving the max matching value

Papers Overview

Paper 9: Matching Sparsification

Theorem 1(informal): can maintain a sparse subgraph that $\approx 3 / 2$ preserves the maximum matching

Papers Overview

Paper 9: Matching Sparsification

Theorem 2: can maintain a $\approx 3 / 2$-approximate matching in amortized time $\approx m^{1 / 4}$ per edge change

Papers Overview

Sparsification of Five Graph-Theoretic Objects

Fractional Opts

Papers Overview

Sparsification of Five Graph-Theoretic Objects

Papers Overview

Background: Graph Colorings

Definition (coloring): a coloring of a graph is an assignment of colors to vertices such that no edge has 2 of the same color

Papers Overview

Background: Graph Colorings

coloring

not a coloring

Definition (coloring): a coloring of a graph is an assignment of colors to vertices such that no edge has 2 of the same color

Papers Overview

Background: Graph Colorings

Theorem (folklore): every graph has a $\Delta+1$ coloring

Papers Overview

Background: Graph Colorings

Theorem (folklore): every graph has a $\Delta+1$ coloring

Papers Overview

Background: Graph Colorings

Theorem (folklore): every graph has a $\Delta+1$ coloring

Papers Overview

Background: Graph Colorings

Theorem (folklore): every graph has a $\Delta+1$ coloring

Papers Overview

Background: Graph Colorings

Theorem (folklore): every graph has a $\Delta+1$ coloring

Papers Overview

Background: Graph Colorings

Theorem (folklore): every graph has a $\Delta+1$ coloring

Papers Overview

Background: Graph Colorings

Theorem (folklore): every graph has a $\Delta+1$ coloring

Papers Overview

Background: Graph Colorings

Theorem (folklore): every graph has a $\Delta+1$ coloring

Papers Overview

Background: Graph Colorings

Theorem (folklore): every graph has a $\Delta+1$ coloring

Papers Overview

Background: Graph Colorings

Theorem (folklore): every graph has a $\Delta+1$ coloring

Papers Overview

Background: Graph Colorings

Theorem (folklore): every graph has a $\Delta+1$ coloring

Papers Overview

Background: Graph Colorings

Theorem (folklore): every graph has a $\Delta+1$ coloring

Papers Overview

Background: Graph Colorings

Theorem (folklore): every graph has a $\Delta+1$ coloring

Papers Overview

Background: Graph Colorings

Theorem (folklore): every graph has a $\Delta+1$ coloring

Papers Overview

Background: Graph Colorings

Theorem (folklore): every graph has a $\Delta+1$ coloring

Papers Overview

Background: Graph Colorings

Theorem (folklore): every graph has a $\Delta+1$ coloring

Papers Overview

Background: Graph Colorings

Theorem (folklore): every graph has a $\Delta+1$ coloring

Papers Overview

Background: Graph Colorings

Theorem (folklore): every graph has a $\Delta+1$ coloring

Papers Overview

Background: Graph Colorings

Theorem (folklore): every graph has a $\Delta+1$ coloring

Papers Overview

Background: Graph Colorings

Theorem (folklore): every graph has a $\Delta+1$ coloring

Papers Overview

Background: Graph Colorings

Theorem (folklore): every graph has a $\Delta+1$ coloring

Papers Overview

Background: Graph Colorings

Theorem (folklore): every graph has a $\Delta+1$ coloring

Papers Overview

Background: Graph Colorings

Theorem (folklore): every graph has a $\Delta+1$ coloring

Papers Overview

Background: Graph Colorings

Theorem (folklore): every graph has a $\Delta+1$ coloring

Papers Overview

Background: Graph Colorings

Theorem (folklore): every graph has a $\Delta+1$ coloring

Papers Overview

Background: Graph Colorings

Theorem (folklore): every graph has a $\Delta+1$ coloring

Papers Overview

Background: Graph Colorings

Theorem (folklore): every graph has a $\Delta+1$ coloring

Papers Overview

Background: Graph Colorings

Theorem (folklore): every graph has a $\Delta+1$ coloring

Papers Overview

Background: Graph Colorings

Theorem (folklore): every graph has a $\Delta+1$ coloring

Papers Overview

Background: Graph Colorings

Theorem (folklore): every graph has a $\Delta+1$ coloring

Papers Overview

Background: Graph Colorings

Theorem (folklore): every graph has a $\Delta+1$ coloring

Papers Overview

Background: Graph Colorings

Theorem (folklore): every graph has a $\Delta+1$ coloring

Papers Overview

Background: Graph Colorings

Theorem (folklore): every graph has a $\Delta+1$ coloring

Papers Overview

Background: Graph Colorings

Theorem (folklore): every graph has a $\Delta+1$ coloring

Papers Overview

Background: Graph Colorings

Theorem (folklore): can color a graph if every vertex has a "palette" of $\Delta+1$ colors

Papers Overview

Paper 10: Palette Sparsification

Theorem: can color a graph if each vertex samples a palette of size $\Omega(\log n)$ from $\Delta+1$ colors

Papers Overview

Paper 10: Palette Sparsification

Theorem(informal): can efficiently color a graph in many models of computation

Papers Overview

Sparsification of Five Graph-Theoretic Objects

> Fractional Opts

Papers Overview

Sparsification of Five Graph-Theoretic Objects

Papers Overview

Background: Survivable Network Design

Goal: efficiently find subset of min-weight subgraph satisfying cut constraints

Papers Overview

Background: Survivable Network Design

Goal: efficiently find subset of min-weight subgraph satisfying cut constraints

Papers Overview

Background: Survivable Network Design

$$
\text { graph } G=(V, E, w)
$$

E.g. $|\delta(S)| \geq 2$ $\forall S \subset V$

2EC NP-Hard

Goal: efficiently find subset of min-weight subgraph satisfying cut constraints

Papers Overview

Background: Linear Relaxations

solve problem "fractionally"

Goal: efficiently find subset of min-weight subgraph satisfying cut constraints

Papers Overview

Background: Linear Relaxations

solve problem "fractionally"

$$
\in P
$$

"integral" solution

Goal: efficiently find subset of min-weight subgraph satisfying cut constraints

Papers Overview

Background: Linear Relaxations

solve problem "fractionally"

$$
\in P
$$

use sparsity

"integral" solution

Goal: efficiently find subset of min-weight subgraph satisfying cut constraints

Papers Overview

Paper 11: Survivable Network Design

solve problem "fractionally"
use sparsity

"integral" solution

Theorem 1: for a general class of ND problems, can always compute optimal fractional solution with support size $O(n)$

Papers Overview

Paper 11: Survivable Network Design

solve problem "fractionally"
use sparsity

"integral" solution

Theorem 2: poly-time 2-approximation for a general class of ND problems

Papers Overview

Paper 12: Bounded Degree Spanning Trees

Theorem 1: for a general class of ND problems, can always compute optimal fractional solution with $O(1)$ arboricity (i.e. everywhere sparse)

Papers Overview

Paper 12: Bounded Degree Spanning Trees

Theorem 2: +2 approximation to degree-bounded spanning tree problem

Papers Overview

Sparsification of Five Graph-Theoretic Objects

Papers Overview

Sparsification of Five Graph-Theoretic Objects

Fractional Opts

Summary

- Coming up:
- Next week is me (how to read, present, listen to theory and spanners)
- Following (Sep. 20) is first student talk
- Will send form with paper preferences for remaining papers after shopping
- Responsibilities:

1. Fill out form of top 3 papers (need Sep 20, 27 ASAP)
2. Read your assigned paper

3. Actively participate and give feedback at end of talk

