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• General


• Computationally tractable

Graph Algorithms
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Why Study Graph (Algorithms)?

graph G = ( , )V

…

P

NP co-NP

EXP

(many) graph

problems

∑ = Π



• General


• Computationally tractable

Graph Algorithms
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dG(u, v) := min{ |P | : path P from u to v}

graph G = ( , )V E
( )dG(u, v) = 5

…∑ Π

 for all 

 in  time
dG(u, v) u, v

O (n ⋅ m)

Why Study Graph Distance (Algorithms)?

u

v

 and n := |V | m := |E |



Class Topic
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Graph Sparsification

graph G = ( , )V E

Focus: graph sparsification

simple representation  

of some property of 

H
G



Class Topic
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Graph Distance Sparsification

graph G = ( , )V E

Focus: graph sparsification

spanning tree 

s.t. 

H
dG = dH
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Why Study Sparsification?
Theme 1: Sparsification Helps Algorithms

What’s the  shortest path?u → v

u

v

What’s the  shortest path?u → v

Focus: graph sparsification

u

v

?
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Theme 2: Approximation Helps Sparsification
Challenges of Sparsification

graph G = ( , )V E

Focus: graph sparsification

u

v dG(u, v) = 1 dG(u, v) = n − 1

spanning tree 

 s.t.   

H
dH = dG

u

v
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graph G = ( , )V E spanning tree 

 s.t.   

H
dH ≈ dG

Focus: graph sparsification

Challenges of Sparsification
Theme 2: Approximation Helps Sparsification



How To Solve Your Favorite Graph Problem
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Hard Problem

 on G

Easy Problem 

on H

sparsify  to 

(Theme 2)

G H

Solution 

on H

apply algorithm (Theme 1)

Solution 

on G

convert 

solution

Focus: graph sparsification
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Logistics Overview



Format Of Class
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Seminar Format

• 11 (remaining) classes


• 1 paper / class (papers already chosen by me)


• First 2 classes by me


• For other classes 1-2 students present / class
class


1
class


2
class


3
class


4
class


5
class


6
class


7
class


8
class


9
class


10
class


11
class
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today paper

1

paper

2

paper

3

paper

4

paper

5

paper

6

paper

7

paper

8

paper

9

paper

10

paper

11



Format Of Class
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Class Format

1. Introduction: ~30 minutes


2. Break: ~20 minutes


3. Technical Details: ~60 minutes


4. Class Feedback: ~15 minutes

class

x

paper

x-1

(flexible)



Format Of Class
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Your Responsibilities

1. Fill out form of top 3 papers after shopping 
(need Sep 20, 27 speakers now)


2. Read your assigned paper


3. Prepare talk on paper + 6 questions


4. Practice (first half of) talk with me week before


5. Actively participate / give feedback after talks



Grading
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• 90% presentations (rubric online)


• 10% in-class participation



Format Of Class
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Disclaimer: A Theory Class

• All proof-based; very technical papers


• Pre-reqs:


• Only official: 155 or 157


• Mathematical maturity


• Familiarity with (graph) algorithms useful


• Relevant background for papers on website


• Ask me if not sure about pre-reqs

∑



Learning Goals
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• Aimed at current / possible (theory) grad students


• Experience with:


• Reading theory (research papers)


• Presenting theory (research papers)


• Listening to theory (research)



Snacks
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• I’m planning on bringing snacks (of fruit variety)


• Let me know if you have allergies
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Papers Overview



Papers Overview
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Sparsification of Five Graph-Theoretic Objects

Distances Cuts/Flows

Matchings Colorings

Fractional Opts



Structure sparsification

Papers Overview
Distance Sparsification

Edge sparsification

Node sparsification
graph H = (V′￼ ⊆ V, E′￼)

 on dH ≈ dG V′￼

graph H = (V, E′￼ ⊆ E)
dH ≈ dG

random tree T = (V, E′￼)
𝔼[dT] ≈ dG

(spanners)

(Steiner Point Removal)

(Tree Embeddings)

1

2

4

3

graph G = ( , )V E
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Papers Overview
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Edge sparsification

Node sparsification
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dH ≈ dG
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(spanners)
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4

3

graph G = ( , )V E



Papers Overview
Paper 2: Steiner Point Removal

graph G = ( , )V E
terminals T ⊆ V s.t.  on dH ≈ dG T

graph H = (T, E′￼, w)

Goal: approximate distances on vertex subset

Trivial as stated!



Papers Overview
Paper 2: Steiner Point Removal

graph G = ( , )V E

d(u, v)

Trivial as stated!

terminals T ⊆ V s.t.  on dH ≈ dG T
graph H = (T, E′￼, w)

Goal: approximate distances on vertex subset



Papers Overview
Paper 2: Steiner Point Removal

graph G = ( , )V E
that preserves ’s ``structure’’


 (i.e. is a minor)
G

s.t.  on dH ≈ dG T

graph H = (T, E′￼, w)
terminals T ⊆ V



Papers Overview
Paper 2: Steiner Point Removal

Theorem: given  and , there is an edge-weighted minor  s.t.G = (V, E) T ⊆ V H
dG(u, v) ≤ dH(u, v) ∀u, v ∈ T| ) ⋅ dG(u, v)T≤ O(log |
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Goal: random low diameter partition with small separation probability

Papers Overview
Paper 3: CKR Cutting Scheme

• Partition vertices  into sets 


• A tradeoff between


• Low diameter





• Low separation


chances  in different 

V V1, V2, …

max
i

max
u,v∈Vi

dG(u, v)

u, v Vi



Goal: random low diameter partition with small separation probability

Papers Overview
Paper 3: CKR Cutting Scheme

• Partition vertices  into sets 


• A tradeoff between


• Low diameter
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chances  in different 

V V1, V2, …

max
i

max
u,v∈Vi

dG(u, v)

u, v Vi



Papers Overview
Paper 3: CKR Cutting Scheme

Goal: random low diameter partition with small separation probability

• Consider partitioning path into -diameter parts


• Randomly shift partition by 


Δ

U[Δ]

+2



Papers Overview
Paper 3: CKR Cutting Scheme

Goal: random low diameter partition with small separation probability

• Consider partitioning path into -diameter parts


• Randomly shift partition by 


Δ

U[Δ]

Pr(u, v separated) ≤   
d(u, v)

Δ
∀u, v



Papers Overview
Paper 3: CKR Cutting Scheme

Theorem: given graph  and diameter  there exists a 
distribution over -diameter partitions s.t.


G Δ
Δ

∀u, v ∈ VPr(u, v separated) ≤

(and applications in the ``0-extension’’ problem)

O(log n) ⋅
dG(u, v)

Δ



Structure sparsification

Papers Overview
Distance Sparsification

Edge sparsification

Node sparsification
graph H = (V′￼ ⊆ V, E′￼)

 on dH ≈ dG V′￼

graph H = (V, E′￼ ⊆ E)
dH ≈ dG

random tree T = (V, E′￼)

(spanners)

(Steiner Point Removal)

(Tree Embeddings)

1

2

4

3

graph G = ( , )V E 𝔼[dT] ≈ dG



Structure sparsification

Papers Overview
Distance Sparsification

Edge sparsification

Node sparsification
graph H = (V′￼ ⊆ V, E′￼)

 on dH ≈ dG V′￼

graph H = (V, E′￼ ⊆ E)
dH ≈ dG

random tree T = (V, E′￼)

(spanners)

(Steiner Point Removal)

(Tree Embeddings)

1

2

4

3

graph G = ( , )V E 𝔼[dT] ≈ dG



Papers Overview
Paper 4: Tree Embeddings

?

What’s the  shortest path?u → v

u

v

u

v

What’s the  shortest path?u → v



Papers Overview
Paper 4: Tree Embeddings

Goal: approximate arbitrary graph distances by a tree

graph G = (V, E) tree T = (V, E′￼, w)
 


 
dG(u, v) ≤ dT(u, v) ≤ α ⋅ dG(u, v)

∀u, v ∈ V



Papers Overview
Paper 4: Tree Embeddings

graph G = (V, E) tree T = (V, E′￼, w)
 


 
dG(u, v) ≤ dT(u, v) ≤ α ⋅ dG(u, v)

∀u, v ∈ V

No hope for a

 single (spanning) tree!

Goal: approximate arbitrary graph distances by a tree
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Papers Overview
Paper 4: Tree Embeddings

graph G = (V, E) tree T = (V, E′￼, w)
 


 
dG(u, v) ≤ dT(u, v) ≤ α ⋅ dG(u, v)

∀u, v ∈ V

Goal: approximate arbitrary graph distances by a tree



Papers Overview
Paper 4: Tree Embeddings

graph G = (V, E) distribution on tree T
 


 
dG(u, v) ≤ 𝔼T[dT(u, v)] ≤ α ⋅ dG(u, v)

∀u, v ∈ V

Goal: approximate arbitrary graph distances by a tree



Papers Overview
Paper 4: Tree Embeddings

Theorem: Given graph ,  a distribution  over trees on  on s.t.


1.       and 


2.     

G = (V, E) ∃ 𝒯 V

dG(u, v) ≤ dT(u, v) ∀T ∈ 𝒯 u, v ∈ V

𝔼T∼𝒯[dT(u, v)] ≤ O(log n) ⋅ dG(u, v) ∀u, v ∈ V

(countless applications)

Uses CKR 

Cutting Scheme

3
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Papers Overview
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Distances Cuts/Flows

Matchings Colorings

Fractional Opts

Sparsification of Five Graph-Theoretic Objects



Papers Overview
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Distances Cuts/Flows

Matchings Colorings

Sparsification of Five Graph-Theoretic Objects

Fractional Opts



Dynamic sparsification

Structure sparsification

Papers Overview
Flow / Cut Sparsification

graph H = (V, E′￼ ⊆ E)
 cuts  cutsH ≈ G

tree T = (V, E′￼)
 flows   flowsT ≈ G

(Random Sampling)

(Dynamic

Tree Flow Sparsifiers)

5

6

graph G = ( , )V E

8

7

tree T = (V, E′￼)
 flows   flowsT ≈ G

(Tree Flow Sparsifiers)

Edge sparsification

4



Papers Overview
Background: Cuts

Definition (Cut): any S ⊆ V

graph G = (V, E)



Papers Overview
Background: Cuts

Definition (Edges of Cut ):  S δ(S) := {(u, v) ∈ E : u ∈ S, v ∉ S}

graph G = (V, E)



Papers Overview
Background: Cuts

Definition (Cut Size): size of cut  is S |δ(S) |

graph G = (V, E)



Papers Overview
Paper 5: Sampling-Based Cut Sparsification

graph G = (V, E) sparse subgraph  s.t.

 
H

|δG(S) | ≈ |δH(S) | ∀S ⊆ V

 w/ 

ingenious 


probability 

e ∈ H

pe

Goal: sparse (edge-weighted) subgraph approximating all cut sizes



Papers Overview
Paper 5: Sampling-Based Cut Sparsification

sparse subgraph  s.t.

 
H

|δG(S) | ≈ |δH(S) | ∀S ⊆ V

How this sort of thing is usually argued


• A given cut  has 
 with tiny 

probability 


• There are only  cuts


• By union bound all cuts  satisfy 
with high prob.

S
|δG(S) | ≉ |δH(S) |

p

k ≪
1
p

S
|δG(S) | ≈ |δH(S) |



Papers Overview
Paper 5: Sampling-Based Cut Sparsification

graph G = (V, E) sparse subgraph  s.t.

 
H

|δG(S) | ≈ |δH(S) | ∀S ⊆ V

Problem:  cuts, need absurdly good chance of for each O(2n) |δG(S) | ≈ |δH(S) | S

 w/ 

(ingenious) 


probability 

e ∈ H

pe



Papers Overview
Paper 5: Sampling-Based Cut Sparsification

 w/ 

(ingenious) 


probability 

e ∈ H

pe

Theorem: for any  can choose  so with high probability so 

1. has  edges

2. preserves all cuts up to  multiplicative factor

ϵ > 0 pe H
O(n log n/ϵ2)

(1 + ϵ)

(and 

applications)



Dynamic sparsification

Structure sparsification

Papers Overview
Flow / Cut Sparsification

graph H = (V, E′￼ ⊆ E)
 cuts  cutsH ≈ G

tree T = (V, E′￼)
 flows   flowsT ≈ G

(Random Sampling)

(Dynamic

Tree Flow Sparsifiers)

5

6

graph G = ( , )V E

8

7

tree T = (V, E′￼)
 flows   flowsT ≈ G

(Tree Flow Sparsifiers)

Edge sparsification

4
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Structure sparsification

Papers Overview
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8

7

tree T = (V, E′￼)
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(Tree Flow Sparsifiers)

Edge sparsification

4



Papers Overview
Background: (Multi-Commodity) Flows

Goal: some way of formalizing how to send information in a network



.5

.5
.5

.5

.5 .5
.5

1

1

1
11

1

1

1

Papers Overview
Background: (Multi-Commodity) Flows

• Given: 


• Graph  


• Vertex “demand” pairs 


• Goal:


• Assign “flow values”  to each  
path  so each pair sends 1 flow


• Minimize congestion 

G = (V, E)

{(si, ti)}i

fP si − ti
P

:= max
e ∑

P∋e

fP

Optimal Flow  Min Cut≈

Can solve in poly-time



Papers Overview

Problem: demands change over time, don’t want to recompute from scratch

Paper 6: Tree Flow Sparsifiers
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Papers Overview

Problem: demands change over time, don’t want to recompute from scratch

Paper 6: Tree Flow Sparsifiers

🤔 What if graph 

was a tree?🤔



Papers Overview
Paper 6: Tree Flow Sparsifiers

Theorem(informal): can construct a tree approximating “flow structure”

Uses tree embeddings!
4



Dynamic sparsification

Structure sparsification

Papers Overview
Flow / Cut Sparsification

graph H = (V, E′￼ ⊆ E)
 cuts  cutsH ≈ G

tree T = (V, E′￼)
 flows   flowsT ≈ G

(Random Sampling)

(Dynamic

Tree Flow Sparsifiers)

5

6

graph G = ( , )V E

8

7

tree T = (V, E′￼)
 flows   flowsT ≈ G

(Tree Flow Sparsifiers)

Edge sparsification

4
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Papers Overview
Background: Dynamic Algorithms

Problem: demands don’t just change, graph does too
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Papers Overview
Background: Dynamic Algorithms

Problem: demands don’t just change, graph does too



Papers Overview
Background: Dynamic Algorithms

Problem: demands don’t just change, graph does too

Paper 6 brittle to changes 😭



S

Papers Overview
Background: Expander Graphs

• A ``well-connected’’ graph


• Conductance of cut  is


• Conductance of graph  is


•  is a -expander if 

S ⊆ V

G = (V, E)

G = (V, E) ϕ ϕG ≥ ϕ

where  vol(S) := ∑
v∈S

deg(v)

 ϕG := min
S⊆V

ϕ(S)

 :=    ϕ(S) |δ(S) | / vol(S)



Papers Overview
Paper 7: Expander Decompositions

Theorem(informal): ”most” of a graph can be decomposed into expanders



Papers Overview
Paper 7: Expander Decompositions

Very Hot Area 

of Algorithms

Theorem: vertices can be partitioned into  s.t. 

1.  is a expander

2. at most  edges “cut”

V1, V2, …
G[Vi] ϕ−

O(ϕ ⋅ log n ⋅ m)



Papers Overview
Paper 7: Expander Decompositions

Dynamic Tree Flow 

Sparsifiers?

Theorem: vertices can be partitioned into  s.t. 

1.  is a expander

2. at most  edges “cut”

V1, V2, …
G[Vi] ϕ−

O(ϕ ⋅ log n ⋅ m)
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Papers Overview
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6
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S

S̄

a low conductance cut

Intuition 1: expansion has something to do with flows

Papers Overview
Paper 8: Dynamic Tree Flow Sparsifiers (The Expander Hierarchy)

Many Edges
Few Edges

Expander 

iff 


low congestion flow 



Intuition 2: expanders are robust to edge deletions

Papers Overview

the most expandy expander

Paper 8: Dynamic Tree Flow Sparsifiers (The Expander Hierarchy)



Intuition 2: expanders are robust to edge deletions

Papers Overview

the most expandy expander

Paper 8: Dynamic Tree Flow Sparsifiers (The Expander Hierarchy)



Papers Overview

Theorem: vertices can be partitioned into  s.t. 

1.  is a expander

2. at most  edges “cut”

V1, V2, …
G[Vi] ϕ−

O(ϕ ⋅ log n ⋅ m)

Paper 8: Dynamic Tree Flow Sparsifiers (The Expander Hierarchy)

7



Theorem(informal): can construct a tree flow sparsifier robust to changes 
that is a hierarchy of expander decompositions by intuitions 1+2

Papers Overview

…

Paper 8: Dynamic Tree Flow Sparsifiers (The Expander Hierarchy)



Papers Overview
Paper 8: Dynamic Tree Flow Sparsifiers (The Expander Hierarchy)

Theorem(informal): can efficiently maintain a tree flow sparsifier under changes
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Theorem(informal): can efficiently maintain a tree flow sparsifier under changes



Papers Overview

95

Distances Cuts/Flows

Matchings Colorings

Sparsification of Five Graph-Theoretic Objects

Fractional Opts



Papers Overview

96

Distances Cuts/Flows

Matchings Colorings

Sparsification of Five Graph-Theoretic Objects

Fractional Opts



Papers Overview
Background: Matching Theory

Definition: a matching of a graph is a subset of endpoint-disjoint edges 

matching not a 

matching 



Papers Overview
Background: Matching Theory

Definition: the max matching is the matching with the most edges

not a max

 matching

a max

matching 



Papers Overview

• Flexible model


ads -> users


doctors -> hospitals


• Mathematically deep

matching 

Background: Matching Theory
buy!



Papers Overview
Paper 9: Matching Sparsification

Goal: efficiently maintain near-max-matching dynamically
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Paper 9: Matching Sparsification

graph the max matching 

Sub-Goal: a sparse robust subgraph ~preserving the max matching value
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graph the max matching 
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Papers Overview
Paper 9: Matching Sparsification

graph the max matching 

Not Robust!

Sub-Goal: a sparse robust subgraph ~preserving the max matching value
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edge-degree-constrained

subgraph

graph 

Theorem 1(informal): can maintain a sparse subgraph 
that  preserves the maximum matching≈ 3/2



Theorem 2: can maintain a -approximate matching 
in amortized time  per edge change

≈ 3/2
≈ m1/4

Papers Overview
Paper 9: Matching Sparsification

edge-degree-constrained

subgraph

graph 
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Theorem (folklore): can color a graph if every vertex 
has a “palette” of  colorsΔ + 1

max degreeΔ =

Background: Graph Colorings
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Paper 10: Palette Sparsification



Papers Overview

Theorem(informal): can efficiently color a graph in 
many models of computation

max degreeΔ =

Paper 10: Palette Sparsification
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Papers Overview
Background: Survivable Network Design

graph G = (V, E, w)

E.g.  
|δ(S) | ≥ 2
∀S ⊂ V

2EC NP-Hard

Goal: efficiently find subset of min-weight subgraph satisfying cut constraints
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compute optimal fractional solution with support size O(n)
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Paper 11: Survivable Network Design

Cool application of LA to

 combinatorial problem!
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solve problem “fractionally”

Theorem 2: poly-time -approximation for a general class of ND problems2

use sparsity

“integral” solution

Paper 11: Survivable Network Design

Cool application of LA to

 combinatorial problem!
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solve problem “fractionally”

use sparsity

“integral” solution

Theorem 1: for a general class of ND problems, can always compute 
optimal fractional solution with  arboricity (i.e. everywhere sparse)O(1)



Papers Overview
Paper 12:  Bounded Degree Spanning Trees

solve problem “fractionally”

use sparsity

“integral” solution

Theorem 2: +2 approximation to degree-bounded spanning tree problem

Most aesthetic paper
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Fractional Opts
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Summary
• Coming up:


• Next week is me (how to read, present, listen to theory and spanners)


• Following (Sep. 20) is first student talk


• Will send form with paper preferences for remaining papers after shopping


• Responsibilities:


1. Fill out form of top 3 papers (need Sep 20, 27 ASAP)


2. Read your assigned paper


3. Prepare talk on paper + 6 questions


4. Practice (first half of) talk with me week before


5. Actively participate and give feedback at end of talk

Hard Easy

 SolH SolG

sparsify G

apply algorithm


