Frontiers of Graph Algorithms

Fall 2023

Brown University

https://dhershko.github.io/teaching/fall23Seminar.html

D Ellis Hershkowitz (Ellis)

Graph Algorithms Why Study Graph (Algorithms)?

• General

• Computationally tractable

• • •

graph G = (V, E)

Graph Algorithms Why Study Graph Distance (Algorithms)?

General

• Computationally tractable

 $d_G(u, v)$ for all u, vin $O(n \cdot m)$ time

 $d_G(u, v) := \min\{|P| : \text{path } P \text{ from } u \text{ to } v\}$

n := |V| and m := |E|

graph G = (V, E) $(d_G(u, v) = 5)$

Class Topic Graph Sparsification

graph G = (V, E)

simple representation H of some property of G

Class Topic Graph Distance Sparsification

graph G = (V, E)

spanning tree H s.t. $d_G = d_H$

Why Study Sparsification? Theme 1: Sparsification Helps Algorithms

What's the $u \rightarrow v$ shortest path?

Focus: graph sparsification

What's the $u \rightarrow v$ shortest path?

Challenges of Sparsification **Theme 2: Approximation Helps Sparsification**

 $d_G(u,v) = n - 1$

Challenges of Sparsification Theme 2: Approximation Helps Sparsification

graph G = (V, E)

spanning tree H s.t. $d_H \approx d_G$

How To Solve Your Favorite Graph Problem

Format Of Class Seminar Format

- 11 (remaining) classes
- 1 paper / class (papers already chosen by me)
- First 2 classes by me
- For other classes 1-2 students present / class

Format Of Class Class Format

- 1. Introduction: ~30 minutes
- 2. Break: ~20 minutes
- 3. Technical Details: ~60 minutes
- 4. Class Feedback: ~15 minutes

(flexible)

Format Of Class Your Responsibilities

- 1. Fill out form of top 3 papers after shopping (need Sep 20, 27 speakers now)
- 2. Read your assigned paper
- 3. Prepare talk on paper + 6 questions
- 4. Practice (first half of) talk with me week before
- 5. Actively participate / give feedback after talks

Grading

- 90% presentations (rubric online)
- 10% in-class participation

)

14

Format Of Class Disclaimer: A Theory Class

- All proof-based; very technical papers
- Pre-reqs:
 - Only official: 155 or 157
 - Mathematical maturity
 - Familiarity with (graph) algorithms useful
 - Relevant background for papers on website
- Ask me if not sure about pre-reqs

Learning Goals

- Aimed at current / possible (theory) grad students
- Experience with:
 - Reading theory (research papers)

Presenting theory (research papers)

• Listening to theory (research)

Snacks

- I'm planning on bringing snacks (of fruit variety)
- Let me know if you have allergies

Papers Overview

Papers Overview **Sparsification of Five Graph-Theoretic Objects**

Distances

Matchings

Fractional Opts

Cuts/Flows

Colorings

Papers Overview Distance Sparsification

graph G = (V, E)

Node sparsification graph $H = (V' \subseteq V, E')$ $d_H \approx d_G$ on V'

(Steiner Point Removal)

Structure sparsification random tree T = (V, E') $\mathbb{E}[d_T] \approx d_G$

(Tree Embeddings)

Papers Overview Distance Sparsification

graph G = (V, E)

Paper 2: Steiner Point Removal

graph G = (V, E)terminals $T \subseteq V$

Goal: approximate distances on vertex subset

graph H = (T, E', w)s.t. $d_H \approx d_G$ on T

Paper 2: Steiner Point Removal

graph G = (V, E)terminals $T \subseteq V$

Goal: approximate distances on vertex subset

Trivial as stated!

Paper 2: Steiner Point Removal

graph G = (V, E)terminals $T \subseteq V$

graph H = (T, E', w)that preserves G's ``structure'' (i.e. is a minor) s.t. $d_H \approx d_G$ on T

Papers Overview Paper 2: Steiner Point Removal

Theorem: given G = (V, E) and $T \subseteq V$, there is an edge-weighted minor H s.t. $d_G(u, v) \le d_H(u, v) \le O(\log|T|) \cdot d_G(u, v) \quad \forall u, v \in T$

Papers Overview Distance Sparsification

graph G = (V, E)

Papers Overview Distance Sparsification

graph G = (V, E)

Paper 3: CKR Cutting Scheme

- Partition vertices V into sets V_1, V_2, \ldots
- A tradeoff between
 - Low diameter

 $\max_{i} \max_{u,v \in V_i} d_G(u,v)$

• Low separation

chances u, v in different V_i

Papers Overview Paper 3: CKR Cutting Scheme

- Partition vertices V into sets V_1, V_2, \ldots
- A tradeoff between
 - Low diameter

max max $d_G(u, v)$ $i \quad u, v \in V_i$

Low separation

chances u, v in different V_i

Papers Overview

- Consider partitioning path into Δ -diameter parts
- Randomly shift partition by $U[\Delta]$

Papers Overview Paper 3: CKR Cutting Scheme

- Consider partitioning path into Δ -diameter parts
- Randomly shift partition by $U[\Delta]$

Pr(u, v separate)

ed)
$$\leq \frac{d(u, v)}{\Delta} \forall u, v$$

Papers Overview Paper 3: CKR Cutting Scheme

distribution over Δ -diameter partitions s.t.

Pr(u, v separated)

(and applications in the ``0-extension" problem)

Theorem: given graph G and diameter Δ there exists a

$$\leq O(\log n) \cdot \frac{d_G(u, v)}{\Delta} \quad \forall u, v \in V$$

Papers Overview Distance Sparsification

graph G = (V, E)

Papers Overview Distance Sparsification

graph G = (V, E)

Paper 4: Tree Embeddings

What's the $u \rightarrow v$ shortest path?

What's the $u \rightarrow v$ shortest path?

Papers Overview Paper 4: Tree Embeddings

graph G = (V, E)

Goal: approximate arbitrary graph distances by a tree

tree T = (V, E', w) $d_G(u, v) \le d_T(u, v) \le \alpha \cdot d_G(u, v)$ $\forall u, v \in V$

graph G = (V, E)

Goal: approximate arbitrary graph distances by a tree

No hope for a single (spanning) tree!

graph G = (V, E)

Goal: approximate arbitrary graph distances by a tree

graph G = (V, E)

Goal: approximate arbitrary graph distances by a tree

graph G = (V, E)

Goal: approximate arbitrary graph distances by a tree

Paper 4: Tree Embeddings

graph G = (V, E)

Goal: approximate arbitrary graph distances by a tree

graph G = (V, E)

Goal: approximate arbitrary graph distances by a tree

distribution on tree T $d_G(u, v) \le \mathbb{E}_T[d_T(u, v)] \le \alpha \cdot d_G(u, v)$ $\forall u, v \in V$

Theorem: Given graph G = (V, E), \exists a distribution \mathcal{T} over trees on V on s.t. 1. $d_G(u, v) \le d_T(u, v)$ $\forall T \in \mathcal{T} \text{ and } u, v \in V$ (countless applications)

2. $\mathbb{E}_{T \sim \mathcal{T}}[d_T(u, v)] \leq O(\log n) \cdot d_G$

$$(u, v) \quad \forall u, v \in V$$

Papers Overview Distance Sparsification

graph G = (V, E)

Papers Overview Distance Sparsification

graph G = (V, E)

Papers Overview **Sparsification of Five Graph-Theoretic Objects**

Distances

Matchings

Fractional Opts

Cuts/Flows

Colorings

Papers Overview **Sparsification of Five Graph-Theoretic Objects**

Distances

Matchings

Fractional Opts

Cuts/Flows

Colorings

47

Papers Overview Flow / Cut Sparsification

Papers Overview **Background: Cuts**

Definition (Cut): any $S \subseteq V$

graph G = (V, E)

Papers Overview **Background: Cuts**

graph G = (V, E)

Definition (Edges of Cut S): $\delta(S) := \{(u, v) \in E : u \in S, v \notin S\}$

Papers Overview Background: Cuts

graph G = (V, E)

Definition (Cut Size): size of cut S is $|\delta(S)|$

graph G = (V, E)

Goal: sparse (edge-weighted) subgraph approximating all cut sizes

How this sort of thing is usually argued

- A given cut S has $|\delta_G(S)| \approx |\delta_H(S)|$ with tiny probability p
- There are only $k \ll \frac{1}{n}$ cuts
- By union bound all cuts S satisfy $|\delta_G(S)| \approx |\delta_H(S)|$ with high prob.

graph G = (V, E)

Problem: $O(2^n)$ cuts, need absurdly good chance of $|\delta_G(S)| \approx |\delta_H(S)|$ for each S

 $e \in H w/$ (ingenious) probability p_e

2. preserves all cuts up to $(1 + \epsilon)$ multiplicative factor

Papers Overview Flow / Cut Sparsification

Papers Overview Flow / Cut Sparsification

Papers Overview **Background: (Multi-Commodity) Flows**

Goal: some way of formalizing how to send information in a network

Papers Overview

Background: (Multi-Commodity) Flows

• Given:

- Graph G = (V, E)
- Vertex "demand" pairs $\{(s_i, t_i)\}_i$

• Goal:

• Assign "flow values" f_P to each $s_i - t_i$ path P so each pair sends 1 flow

Minimize congestion := max $\sum_{P \ni e} f_P$

Can solve in poly-time

Optimal Flow \approx **Min Cut**

Papers Overview Paper 6: Tree Flow Sparsifiers

Theorem(informal): can construct a tree approximating "flow structure"

Uses tree embeddings!

Papers Overview Flow / Cut Sparsification

Papers Overview Flow / Cut Sparsification

Papers Overview Background: Expander Graphs

- A ``well-connected" graph
- Conductance of cut $S \subseteq V$ is $\phi(S) := |\delta(S)| / \operatorname{vol}(S)$ where $vol(S) := \sum deg(v)$ $v \in S$ • Conductance of graph G = (V, E) is $\phi_G := \min_{S \subseteq V} \phi(S)$ • G = (V, E) is a ϕ -expander if $\phi_G \ge \phi$

Papers Overview Paper 7: Expander Decompositions

Theorem(informal): "most" of a graph can be decomposed into expanders

Papers Overview Paper 7: Expander Decompositions

Theorem: vertices can be partitioned into V_1, V_2, \ldots s.t. 1. $G[V_i]$ is a ϕ -expander 2. at most $O(\phi \cdot \log n \cdot m)$ edges "cut"

Very Hot Area of Algorithms

Papers Overview Paper 7: Expander Decompositions

Theorem: vertices can be partitioned into V_1, V_2, \ldots s.t. 1. $G[V_i]$ is a ϕ -expander 2. at most $O(\phi \cdot \log n \cdot m)$ edges "cut"

Dynamic Tree Flow Sparsifiers?

Papers Overview Flow / Cut Sparsification

Papers Overview Flow / Cut Sparsification

Many Edges

a low conductance cut

Intuition 1: expansion has something to do with flows

Few Edges Expander iff low congestion flow

Intuition 2: expanders are *robust* to edge deletions

Intuition 2: expanders are *robust* to edge deletions

Paper 8: Dynamic Tree Flow Sparsifiers (The Expander Hierarchy)

Theorem: vertices can be partitioned into $V_1, V_2, ...$ s.t. 1. $G[V_i]$ is a ϕ -expander 2. at most $O(\phi \cdot \log n \cdot m)$ edges "cut"

Theorem(informal): can construct a tree flow sparsifier robust to changes that is a hierarchy of expander decompositions by intuitions 1+2

Papers Overview **Sparsification of Five Graph-Theoretic Objects**

Distances

Matchings

Fractional Opts

Cuts/Flows

Colorings

Papers Overview **Sparsification of Five Graph-Theoretic Objects**

Distances

Matchings

Fractional Opts

Colorings

Papers Overview Background: Matching Theory

matching

not a matching

Definition: a matching of a graph is a subset of endpoint-disjoint edges

Papers Overview Background: Matching Theory

not a max matching

Definition: the max matching is the matching with the most edges

Papers Overview Background: Matching Theory

• Flexible model

ads -> users

doctors -> hospitals

• Mathematically deep

matching

Sub-Goal: a sparse robust subgraph ~preserving the max matching value

the max matching

Paper 9: Matching Sparsification

Sub-Goal: a sparse robust subgraph ~preserving the max matching value

the max matching

Paper 9: Matching Sparsification

Sub-Goal: a sparse robust subgraph ~preserving the max matching value

the max matching

Not Robust!

Paper 9: Matching Sparsification

Sub-Goal: a sparse robust subgraph ~preserving the max matching value

edge-degree-constrained subgraph

graph

edge-degree-constrained subgraph

Theorem 1(informal): can maintain a sparse subgraph that $\approx 3/2$ preserves the maximum matching
Paper 9: Matching Sparsification

Theorem 2: can maintain a $\approx 3/2$ -approximate matching in amortized time $\approx m^{1/4}$ per edge change

edge-degree-constrained subgraph

Papers Overview **Sparsification of Five Graph-Theoretic Objects**

Distances

Matchings

Fractional Opts

Colorings

Papers Overview **Sparsification of Five Graph-Theoretic Objects**

Distances

Matchings

Fractional Opts

Colorings

Definition (coloring): a coloring of a graph is an assignment of colors to vertices such that no edge has 2 of the same color

coloring

Definition (coloring): a coloring of a graph is an assignment of colors to vertices such that no edge has 2 of the same color

not a coloring

coloring

 $\Delta = \max \text{ degree}$

Theorem (folklore): every graph has a $\Delta + 1$ coloring

coloring

 $\Delta = \max \text{ degree}$

not a coloring

Theorem (folklore): every graph has a $\Delta + 1$ coloring **Proof by greedy algorithm**

Theorem (folklore): every graph has a $\Delta + 1$ coloring **Proof by greedy algorithm**

Theorem (folklore): every graph has a $\Delta + 1$ coloring **Proof by greedy algorithm**

Theorem (folklore): can color a graph if every vertex has a "palette" of $\Delta + 1$ colors

Papers Overview Paper 10: Palette Sparsification

Theorem: can color a graph if each vertex samples a palette of size $\Omega(\log n)$ from $\Delta + 1$ colors

Papers Overview Paper 10: Palette Sparsification

Theorem(informal): can efficiently color a graph in many models of computation

Papers Overview **Sparsification of Five Graph-Theoretic Objects**

Distances

Matchings

Fractional Opts

Colorings

Papers Overview Sparsification of Five Graph-Theoretic Objects

Distances

Matchings

Fractional Opts

Papers Overview Background: Survivable Network Design

graph G = (V, E, w)

E.g. $|\delta(S)| \ge 1$ $\forall S \subset V$

 $MST \in P$

Papers Overview Background: Survivable Network Design

graph G = (V, E, w)

E.g. $|\delta(S)| \ge 1$ $\forall S \subset V$

$MST \in P$

Papers Overview Background: Survivable Network Design

graph G = (V, E, w)

E.g. $|\delta(S)| \ge 2$ $\forall S \subset V$

2EC NP-Hard

Papers Overview Background: Linear Relaxations

solve problem "fractionally"

Papers Overview Background: Linear Relaxations

solve problem "fractionally" $\in P$

Goal: efficiently find subset of min-weight subgraph satisfying cut constraints

Papers Overview Background: Linear Relaxations

solve problem "fractionally" $\in P$

Goal: efficiently find subset of min-weight subgraph satisfying cut constraints

Papers Overview Paper 11: Survivable Network Design

solve problem "fractionally"

Theorem 1: for a general class of ND problems, can always compute optimal fractional solution with support size O(n)

Cool application of LA to combinatorial problem!

Papers Overview Paper 11: Survivable Network Design

solve problem "fractionally"

Theorem 2: poly-time 2-approximation for a general class of ND problems

Cool application of LA to combinatorial problem!

Papers Overview Paper 12: Bounded Degree Spanning Trees

solve problem "fractionally"

Theorem 1: for a *general class of ND problems*, can always compute optimal fractional solution with O(1) arboricity (i.e. everywhere sparse)

Papers Overview Paper 12: Bounded Degree Spanning Trees

solve problem "fractionally"

Theorem 2: +2 approximation to degree-bounded spanning tree problem

Most aesthetic paper

Papers Overview Sparsification of Five Graph-Theoretic Objects

Distances

Matchings

Fractional Opts

Papers Overview Sparsification of Five Graph-Theoretic Objects

Distances

Matchings

Fractional Opts

Summary

• Coming up:

- Next week is me (how to read, present, listen to theory and spanners)
- Following (Sep. 20) is first student talk
- Will send form with paper preferences for remaining papers after shopping

• **Responsibilities:**

- 1. Fill out form of top 3 papers (**need Sep 20, 27 ASAP**)
- 2. Read your assigned paper
- 3. Prepare talk on paper + 6 questions
- 4. Practice (first half of) talk with me week before
- 5. Actively participate and give feedback at end of talk

