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Length-Constrained Expander Decompositions

 Graph Decomposition Approach 
1. Length-Constrained Expander Decomposition                                             

add to graph edge length increases                             
to make it a length-constrained expander 

2. Solve Problem                                                         
solve problem on nice graph 

3. Clean Up                                                                   
deal with modifications



 Graph decomposition approach with LC EDs gives SOTA for: 

• Approximate Min-Cost Multi-Commodity Flow [HHLRS STOC24] 

• Deterministic Distance Oracles [HLS FOCS24] 

• -Approximate Parallel Min Cost Flow [HJLSW FOCS25](1 + ϵ)

Length-Constrained Expander Decompositions
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Sparse Length-Constrained Cuts

-Length -Sparse Cut Formallyish. 
 total length increase for some  that makes  

some -near disjoint vertex pairs w/ degree   
at least -far

(h, s) ϕ
X X

h X/ϕ
hs

Sparse LC Cut Informally. 
small total length increase that makes 

many close vertex pairs 
 far

Note. Any -length -sparse cut has size (i.e. ) at most ~(h, s) ϕ X ϕm (since ~ )X/ϕ ≤ m

Sparse LC Cut
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Length-Constrained Expanders

-Length -Expanders Formallyish. 
no -length 

 -sparse  
cuts

(h, s) ϕ
(h, s)
ϕ

Length-Constrained Expanders Informally. 
hard to make 

 nearby nodes  
far

Flow View Informally. Easy for nearby nodes to send flow over short paths

LC Expander
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Length-Constrained Expander Decompositions

-Length -Expander Decomposition  
length increases that  

make graph  
an -length -expander

(h, s) ϕ

(h, s) ϕ

-Length -Expander(h, s) ϕ
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Our Main Result (Formally)

Theorem [BHHT]. Any graph  has an -length -expander 
decomposition of size   (proven simply)

G (h, s) ϕ
s ⋅ nO(1/s) ⋅ ϕm

Previously [HHT].   (proven not simply)log n ⋅ s ⋅ nO(1/s) ⋅ ϕm

Length-constrained  
expander 

quality

Total length 
 increase
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…

 is an -length -EDC (h, s) ϕ

🤔 But why is it small? 🤔

Return C = ∑
i

Ci

 of Cuts [BHHT].  is an ~ -length 
-sparse cut

∪ C (h, s)
(snO(1/s) ⋅ ϕ)

So

Theorem [BHHT]. Any graph  has an -length -expander 
decomposition of size   (proven simply)

G (h, s) ϕ
s ⋅ nO(1/s) ⋅ ϕm

+
+
+

+
+ +

+
+

+
+(no sparse cuts left)

Any -length -sparse cut has size at most  (h, s) (snO(1/s) ⋅ ϕ) s ⋅ nO(1/s) ⋅ ϕm
 has size at most  C s ⋅ nO(1/s) ⋅ ϕm

From  of Cuts to LC Expander Decompositions∪



Outline

Existence of LC 
Decompositions of Cuts∪

Easy

+
+
+

+
+ ++

+
+

+
+

+
+
+

+
+ +

+
+

+
+

Parallel Greedy 
Arboricity

Easy
(prior)



From Parallel Greedy Arboricity to  of Cuts∪
 is an -parallel-greedy graph if its edges 

decompose into matchings  where if 

 then  and  at least -far in 

G = (V, E) s
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cover all edges
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The arboricity of a graph 
is the minimum number 
of forests needed to 
cover all edges

Arboricity 2

From Parallel Greedy Arboricity to  of Cuts∪

PG Arboricity to  of Cuts [HHT].  is -length -sparse in   
where  is the arboricity of -parallel-greedy graphs

∪ C (h, s) αϕ G
α s



~3 pages based on “dispersion/counting” framework.

From Parallel Greedy Arboricity to  of Cuts∪

Parallel Greedy Arboricity [BHHT].  
where  is the arboricity of -parallel-greedy graphs

α ≤ s ⋅ nO(1/s)

α s
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Thanks!


