
Simple Length-Constrained
Expander Decompositions

Bernhard Haeupler
INSAIT & ETH Zurich

(SOSA 2026)

Greg Bodwin
U. Michigan

D Ellis Hershkowitz
Brown

Zihan Tan
U. Minnesota

+
+
+

+
+ ++

+
+

+
+

+
+
+

+
+ +

+
+

+
+

How to Solve Your Favorite Graph Problem

 Graph Decomposition Approach
1. Graph Decomposition

add to graph “modifications”
to make it “nice”

2. Solve Problem
solve problem on nice graph

3. Clean Up
deal with modifications

How to Solve Your Favorite Graph Problem

 Graph Decomposition Approach
1. Graph Decomposition

add to graph “modifications”
to make it “nice”

2. Solve Problem
solve problem on nice graph

3. Clean Up
deal with modifications

How to Solve Your Favorite Graph Problem

 Graph Decomposition Approach
1. Graph Decomposition

add to graph “modifications”
to make it “nice”

2. Solve Problem
solve problem on nice graph

3. Clean Up
deal with modifications

How to Solve Your Favorite Graph Problem

 Graph Decomposition Approach
1. Graph Decomposition

add to graph “modifications”
to make it “nice”

2. Solve Problem
solve problem on nice graph

3. Clean Up
deal with modifications

How to Solve Your Favorite Graph Problem

 Graph Decomposition Approach
1. Graph Decomposition

add to graph “modifications”
to make it “nice”

2. Solve Problem
solve problem on nice graph

3. Clean Up
deal with modifications

How to Solve Your Favorite Graph Problem

Hard

Graph Decomposition Size-Niceness Tradeoff

to solve problem
to deal with modificationEasy

Niceness

Modification Size

How to Solve Your Favorite Graph Problem

Niceness

Modification Size

Graph Decomposition Size-Niceness Tradeoff

Hard
to solve problem
to deal with modification

Easy

Length-Constrained Expander Decompositions

 Graph Decomposition Approach
1. Graph Decomposition

add to graph “modifications”
to make it “nice”

2. Solve Problem
solve problem on nice graph

3. Clean Up
deal with modifications

 Graph Decomposition Approach
1. Length-Constrained Expander Decomposition

add to graph “modifications”
to make it “nice”

2. Solve Problem
solve problem on nice graph

3. Clean Up
deal with modifications

Length-Constrained Expander Decompositions

+

+

+

+

Length-Constrained Expander Decompositions

 Graph Decomposition Approach
1. Length-Constrained Expander Decomposition

add to graph edge length increases
to make it “nice”

2. Solve Problem
solve problem on nice graph

3. Clean Up
deal with modifications

+

+

+

+

Length-Constrained Expander Decompositions

 Graph Decomposition Approach
1. Length-Constrained Expander Decomposition

add to graph edge length increases
to make it a length-constrained expander

2. Solve Problem
solve problem on nice graph

3. Clean Up
deal with modifications

 Graph decomposition approach with LC EDs gives SOTA for:

• Approximate Min-Cost Multi-Commodity Flow [HHLRS STOC24]

• Deterministic Distance Oracles [HLS FOCS24]

• -Approximate Parallel Min Cost Flow [HJLSW FOCS25](1 + ϵ)

Length-Constrained Expander Decompositions

Niceness

Modification Size

Our Main Result (Informally)

Theorem [BHHT]. Simple proof of the existence of length-constrained
expander decompositions with improved size-niceness tradeoffs

Niceness

Total length
 increase

Our Main Result (Informally)

Theorem [BHHT]. Simple proof of the existence of length-constrained
expander decompositions with improved size-niceness tradeoffs

Length-constrained
expander

quality

Total length
 increase

Our Main Result (Informally)

Theorem [BHHT]. Simple proof of the existence of length-constrained
expander decompositions with improved size-niceness tradeoffs

Defining Length-Constrained EDs

+

+

+
+

Sparse Length-Constrained Cuts

Sparse LC Cut Informally.
small total length increase that makes

many close vertex pairs
 far

Sparse LC Cut

Sparse Length-Constrained Cuts

-Length -Sparse Cut Formallyish.
 total length increase for some that makes

some -near disjoint vertex pairs w/ degree
at least -far

(h, s) ϕ
X X

h X/ϕ
hs

Sparse LC Cut Informally.
small total length increase that makes

many close vertex pairs
 far

Note. Any -length -sparse cut has size (i.e.) at most ~(h, s) ϕ X ϕm (since ~)X/ϕ ≤ m

Sparse LC Cut

+

+

+
+

 length increasesX
 total degreeX/ϕ

+

+

+
+

Length-Constrained Expanders

-Length -Expanders Formallyish.
no -length

 -sparse
cuts

(h, s) ϕ
(h, s)
ϕ

Length-Constrained Expanders Informally.
hard to make

 nearby nodes
far

Flow View Informally. Easy for nearby nodes to send flow over short paths

LC Expander

Length-Constrained Expander Decompositions

-Length -Expander Decomposition
length increases that

make graph
an -length -expander

(h, s) ϕ

(h, s) ϕ

Arbitrary Graph

Length-Constrained Expander Decompositions

-Length -Expander Decomposition
length increases that

make graph
an -length -expander

(h, s) ϕ

(h, s) ϕ

Arbitrary Graph

+
+
+

+
+ +

+
+

+
+

+
+
+

+
+ +

+
+

+
+

Length-Constrained Expander Decompositions

-Length -Expander Decomposition
length increases that

make graph
an -length -expander

(h, s) ϕ

(h, s) ϕ

-Length -Expander(h, s) ϕ

Our Result

Our Main Result (Formally)

Theorem [BHHT]. Any graph has an -length -expander
decomposition of size (proven simply)

G (h, s) ϕ
s ⋅ nO(1/s) ⋅ ϕm

Previously [HHT]. (proven not simply)log n ⋅ s ⋅ nO(1/s) ⋅ ϕm

Length-constrained
expander

quality

Total length
 increase

Proof Sketch of Our Result

Outline

Existence of LC
Decompositions of Cuts∪

Easy

+
+
+

+
+ ++

+
+

+
+

+
+
+

+
+ +

+
+

+
+

Parallel Greedy
Arboricity

Easy
(prior)

From of Cuts to LC Expander Decompositions∪

,

While has an -length -sparse cut

 with applied

i ← 0 G0 ← G

Gi (h, s) ϕ Ci

Gi+1 ← Gi Ci

i ← i + 1

Theorem [BHHT]. Any graph has an -length -expander
decomposition of size (proven simply)

G (h, s) ϕ
s ⋅ nO(1/s) ⋅ ϕm

Return C = ∑
i

Ci

,

While has an -length -sparse cut

 with applied

i ← 0 G0 ← G

Gi (h, s) ϕ Ci

Gi+1 ← Gi Ci

i ← i + 1

Theorem [BHHT]. Any graph has an -length -expander
decomposition of size (proven simply)

G (h, s) ϕ
s ⋅ nO(1/s) ⋅ ϕm

+
+
+

Return C = ∑
i

Ci

From of Cuts to LC Expander Decompositions∪

Theorem [BHHT]. Any graph has an -length -expander
decomposition of size (proven simply)

G (h, s) ϕ
s ⋅ nO(1/s) ⋅ ϕm

+
+
+

+
+ +

,

While has an -length -sparse cut

 with applied

i ← 0 G0 ← G

Gi (h, s) ϕ Ci

Gi+1 ← Gi Ci

i ← i + 1

Return C = ∑
i

Ci

From of Cuts to LC Expander Decompositions∪

Theorem [BHHT]. Any graph has an -length -expander
decomposition of size (proven simply)

G (h, s) ϕ
s ⋅ nO(1/s) ⋅ ϕm

+
+
+

+
+ +

+
+

+
+

,

While has an -length -sparse cut

 with applied

i ← 0 G0 ← G

Gi (h, s) ϕ Ci

Gi+1 ← Gi Ci

i ← i + 1

Return C = ∑
i

Ci

From of Cuts to LC Expander Decompositions∪

Theorem [BHHT]. Any graph has an -length -expander
decomposition of size (proven simply)

G (h, s) ϕ
s ⋅ nO(1/s) ⋅ ϕm

+
+
+

+
+ +

+
+

+
+

,

While has an -length -sparse cut

 with applied

i ← 0 G0 ← G

Gi (h, s) ϕ Ci

Gi+1 ← Gi Ci

i ← i + 1

Return C = ∑
i

Ci

From of Cuts to LC Expander Decompositions∪

…

 is an -length -EDC (h, s) ϕ

🤔 But why is it small? 🤔

Return C = ∑
i

Ci

 of Cuts [BHHT]. is an ~ -length
-sparse cut

∪ C (h, s)
(snO(1/s) ⋅ ϕ)

So

Theorem [BHHT]. Any graph has an -length -expander
decomposition of size (proven simply)

G (h, s) ϕ
s ⋅ nO(1/s) ⋅ ϕm

+
+
+

+
+ +

+
+

+
+(no sparse cuts left)

Any -length -sparse cut has size at most (h, s) (snO(1/s) ⋅ ϕ) s ⋅ nO(1/s) ⋅ ϕm
 has size at most C s ⋅ nO(1/s) ⋅ ϕm

From of Cuts to LC Expander Decompositions∪

Outline

Existence of LC
Decompositions of Cuts∪

Easy

+
+
+

+
+ ++

+
+

+
+

+
+
+

+
+ +

+
+

+
+

Parallel Greedy
Arboricity

Easy
(prior)

From Parallel Greedy Arboricity to of Cuts∪
 is an -parallel-greedy graph if its edges

decompose into matchings where if

 then and at least -far in

G = (V, E) s
E = M1 ⊔ M2 ⊔ …

{u, v} ∈ Mi u v s V, ⋃
j<i

Mj

-parallel-greedy12

-parallel-greedy12

From Parallel Greedy Arboricity to of Cuts∪
 is an -parallel-greedy graph if its edges

decompose into matchings where if

 then and at least -far in

G = (V, E) s
E = M1 ⊔ M2 ⊔ …

{u, v} ∈ Mi u v s V, ⋃
j<i

Mj

-parallel-greedy12

From Parallel Greedy Arboricity to of Cuts∪
 is an -parallel-greedy graph if its edges

decompose into matchings where if

 then and at least -far in

G = (V, E) s
E = M1 ⊔ M2 ⊔ …

{u, v} ∈ Mi u v s V, ⋃
j<i

Mj

-parallel-greedy12

From Parallel Greedy Arboricity to of Cuts∪
 is an -parallel-greedy graph if its edges

decompose into matchings where if

 then and at least -far in

G = (V, E) s
E = M1 ⊔ M2 ⊔ …

{u, v} ∈ Mi u v s V, ⋃
j<i

Mj

-parallel-greedy12

From Parallel Greedy Arboricity to of Cuts∪
 is an -parallel-greedy graph if its edges

decompose into matchings where if

 then and at least -far in

G = (V, E) s
E = M1 ⊔ M2 ⊔ …

{u, v} ∈ Mi u v s V, ⋃
j<i

Mj

The arboricity of a graph
is the minimum number
of forests needed to
cover all edges

Arboricity 2

From Parallel Greedy Arboricity to of Cuts∪

The arboricity of a graph
is the minimum number
of forests needed to
cover all edges

Arboricity 2

From Parallel Greedy Arboricity to of Cuts∪

The arboricity of a graph
is the minimum number
of forests needed to
cover all edges

Arboricity 2

From Parallel Greedy Arboricity to of Cuts∪

PG Arboricity to of Cuts [HHT]. is -length -sparse in
where is the arboricity of -parallel-greedy graphs

∪ C (h, s) αϕ G
α s

~3 pages based on “dispersion/counting” framework.

From Parallel Greedy Arboricity to of Cuts∪

Parallel Greedy Arboricity [BHHT].
where is the arboricity of -parallel-greedy graphs

α ≤ s ⋅ nO(1/s)

α s

Summarizing

Summary

Existence of LC
Decompositions of Cuts∪

Easy

+
+
+

+
+ ++

+
+

+
+

+
+
+

+
+ +

+
+

+
+

Parallel Greedy
Arboricity

Easy
(prior)

Thanks!

