Simple Length-Constrained

Expander Decompositions
(SOSA 2026)

Bernhard Haeupler D Ellis Hershkowitz Greg Bodwin Zihan Tan

How to Solve Your Favorite Graph Problem

Graph Decomposition Approach

How to Solve Your Favorite Graph Problem

Graph Decomposition Approach

1. Graph Decomposition
add to graph "“moditications”
to make it “nice”

How to Solve Your Favorite Graph Problem

Graph Decomposition Approach

1. Graph Decomposition
add to graph "“moditications”
to make it “nice”

How to Solve Your Favorite Graph Problem

Graph Decomposition Approach

1. Graph Decomposition
add to graph "“moditications”
to make it “nice”

2. Solve Problem
solve problem on nice graph

How to Solve Your Favorite Graph Problem

Graph Decomposition Approach

. Graph Decomposition
add to graph "“moditications”
to make it “nice”

. Solve Problem
solve problem on nice graph

. Clean Up
deal with modifications

How to Solve Your Favorite Graph Problem

Niceness

Hard to solve problem
Easy to deal with modification

Moditication Size

Graph Decomposition Size-Niceness Tradeoff

How to Solve Your Favorite Graph Problem

Easy to solve problem
Hard to deal with modification

Niceness

Moditication Size

Graph Decomposition Size-Niceness Tradeoff

Length-Constrained Expander Decompositions

Graph Decomposition Approach

. Graph Decomposition
add to graph "“moditications”
to make it "nice”

. Solve Problem
solve problem on nice graph

. Clean Up
deal with modifications

Length-Constrained Expander Decompositions

Graph Decomposition Approach

1. Length-Constrained Expander Decomposition
add to graph "“moditications”
to make it "nice”

. Solve Problem
solve problem on nice graph

. Clean Up
deal with modifications

Length-Constrained Expander Decompositions

Graph Decomposition Approach

1. Length-Constrained Expander Decomposition

add to graph edge length increases
to make it "nice”

. Solve Problem
solve problem on nice graph

. Clean Up
deal with modifications

Length-Constrained Expander Decompositions

Graph Decomposition Approach

1. Length-Constrained Expander Decomposition
add to graph edge length increases
to make it a length-constrained expander

. Solve Problem
solve problem on nice graph

. Clean Up
deal with modifications

Length-Constrained Expander Decompositions

Graph decomposition approach with LC EDs gives SOTA for:

e Approximate Min-Cost Multi-Commodity Flow

e Deterministic Distance Oracles

e (1 + €)-Approximate Parallel Min Cost Flow

Our Main Result (Informally)

Theorem . Simple proof of the existence of length-constrained

expander decompositions with improved size-niceness tradeofts

Niceness w

Moditication Size

Our Main Result (Informally)

Theorem . Simple proof of the existence of length-constrained

expander decompositions with improved size-niceness tradeofts

Niceness w

Total length
INCrease

Our Main Result (Informally)

Theorem . Simple proof of the existence of length-constrained

expander decompositions with improved size-niceness tradeofts

Length-constrained w
expander
quality
Total length

INCrease

Defining Length-Constrained EDs

Sparse Length-Constrained Cuts

Sparse LC Cut

Sparse Length-Constrained Cuts

Sparse LC Cut
X length increases

X/¢ total degree

Note. Any (4, 5)-length ¢-sparse cut has size (i.e. X) at most ~¢pm (since ~X/¢ < m)

Length-Constrained Expanders

LC Expander

Flow View Informally. Easy for nearby nodes to send flow over short paths

Length-Constrained Expander Decompositions

(h, s)-Length ¢-Expander Decomposition
length increases that
make graph

an (h, s)-length ¢p-expander

Arbitrary Graph

Length-Constrained Expander Decompositions

(h, s)-Length ¢-Expander Decomposition
length increases that
make graph

an (h, s)-length ¢p-expander

Arbitrary Graph

Length-Constrained Expander Decompositions

(h, s)-Length ¢-Expander Decomposition
length increases that
make graph

an (h, s)-length ¢p-expander

(h, s)-Length ¢p-Expander

Our Result

Our Main Result (Formally)

Length-constrained w
expander
quality
Total length

INCrease

Proof Sketch of Our Result

Outline

—

Parallel Greedy| Easy casy | Existence of LC
Arboricity >| Uof Cuts " | Decompositions

From U of Cuts to LC Expander Decompositions

Theorem .Any graph G has an (A, s)-length ¢p-expander
decomposition of size s - %)

1 —0,Gy < G
While G; has an (h, s)-length ¢-sparse cut C;

G, < G;with C; applied

l

1 — 1+ 1

Return C = Z C

From U of Cuts to LC Expander Decompositions

Theorem .Any graph G has an (A, s)-length ¢p-expander
decomposition of size s - %)

1 —0,Gy < G
While G; has an (h, s)-length ¢-sparse cut C;

G, < G;with C; applied

l

1 — 1+ 1

Return C = Z C

From U of Cuts to LC Expander Decompositions

Theorem .Any graph G has an (A, s)-length ¢p-expander
decomposition of size s - %)

1 —0,Gy < G
While G; has an (h, s)-length ¢-sparse cut C;

G, < G;with C; applied

l

1 — 1+ 1

Return C = Z C

From U of Cuts to LC Expander Decompositions

Theorem .Any graph G has an (A, s)-length ¢p-expander
decomposition of size s - %)

1 —0,Gy < G
While G; has an (h, s)-length ¢-sparse cut C;

G, < G;with C; applied

l

1 — 1+ 1

Return C = Z C

From U of Cuts to LC Expander Decompositions

Theorem .Any graph G has an (A, s)-length ¢p-expander
decomposition of size s - %)

1 —0,Gy < G
While G; has an (h, s)-length ¢-sparse cut C;

G, < G;with C; applied

l

1 — 1+ 1

Return C = Z C

From U of Cuts to LC Expander Decompositions

Theorem .Any graph G has an (A, s)-length ¢p-expander
decomposition of size s - %)

Return C = 2 C,
Cis an (h, s)-length ¢-ED (no sparse cuts left)

0 But why is it small? ¢

U of Cuts . Cis an ~(h, s)-length

(snPU) . g)-sparse cut

Any (h, s)-length (sn®1S) . ¢h)-sparse cut has size at most s - n%VS) . pm

So C has size at most s - %) . hm

casy, | Existence of LC
§7 ' Decompositions

U of Cuts

Easy
.

>
_ 3
O >
L =
— 'O
O =
— O
O O
— S
w © <
©
0

Outline

From Parallel Greedy Arboricity to U of Cuts

12-parallel-greedy

From Parallel Greedy Arboricity to U of Cuts

12-parallel-greedy

From Parallel Greedy Arboricity to U of Cuts

\‘\. 7/\
e .

12-parallel-greedy

From Parallel Greedy Arboricity to U of Cuts

~

12-parallel-greedy

From Parallel Greedy Arboricity to U of Cuts

12-parallel-greedy

From Parallel Greedy Arboricity to U of Cuts

The arboricity of a graph
is the minimum number

of forests needed to
cover all edges

Arboricity 2

From Parallel Greedy Arboricity to U of Cuts

Arboricity 2

From Parallel Greedy Arboricity to U of Cuts

The arboricity of a graph
is the minimum number

of forests needed to
cover all edges

Arboricity 2

PG Arboricity to U of Cuts . Cis (h,s)-length ag-sparse in G

where a is the arboricity of s-parallel-greedy graphs

Parallel Greedy Arboricity

A< SN

From Parallel Greedy Arboricity to U of Cuts

O(1/s)

where a is the arboricity of s-parallel-greedy graphs

~3 pages based on “dispersion/counting” framework.

graph, serves to upper bound the arboricity by Theorem 2.1. A similar framework has been used
in recent work on graph spanners; for example, [Bod25; BHP24] use this framework over related
(but more specific) types of paths.

For the rest of this section we assume we are given an n-node s-parallel greedy graph G =
(V, E) with m edges whose arboricity we aim to bound. Likewise, we let (M,..., M) be an
ordered sequence of matchings that partition the edge set E, witnessing G is an s-parallel-greedy
graph. Also, for the rest of this section, we refer to a path with exactly s/2 edges as an 3-path
and for simplicity of presentation we assume that s is even; in the case where s is odd, the same
proof works with respect to #1!-paths (leading to the slightly-improved bound of O(s - n% (++1))
mentioned previously).

The following formalizes the sense of monotonic paths we use.

Definition 3.1 (Monotonic Paths). A path P in G is monotonic if the edges in P occur in exactly the same
order as the matchings that contain these edges. In other words, let (e1, ez, . .., es) be the edge sequence of
P, and let M;, be the matching that contains edge e; for each 1 < j < x. Then we say that P is monotonic
ifwe have iy < iz < -+ < is.

The rest of this section proves Theorem 1.3 by counting the number of monotonic $-paths.

3.1 Dispersion Lemma

Our dispersion lemma shows that monotonic 3-paths must be “dispersed” around the graph,
rather than be concentrated on one pair of endpoints. This lemma will use a slightly different
characterization of s-parallel-greedy graphs as below.

Lemma 3.2. For any cycle C of s-parallel-greedy graph G with |C| < s + 1 edges, if M; is the highest-
indexed matching that contains an edge of C, then there are least two edges from M; in C.

Proof. Suppose for the sake of contradiction that C only contained one edge {u, v} from M;. Then,
Gi-1:= (V,U;<; M;) contains every edge other than {u,v} of C of which there are at most s so

dg, ,(u,v) <s. 3.1)
But, {u,v} € M;and G is s-parallel-greedy so dg;_, (u,v) > s which contradicts Equation (3.1). O

See Figure 1c for an illustration of this on a 12-parallel-greedy graph; in this graph, there are many
cycles with at most 13 edges but each such cycle has at least two edge from its highest-indexed
incident matching.

The following is our dispersion lemma.

Lemma 3.3 (Dispersion Lemma). For u,v € V, there is at most one monotonic 3-path from u to v in G.

Proof. Suppose for contradiction that there are two distinct %-paths from u to v, P, and Py; see
Figure 2a. Then there exist contiguous subpaths Q, C P, @, € P, such that Q, U Q, forms a cycle

C. Note that the number of edges in C satisfies
[C] < |Qal + @bl < |Pa| + | P5| = s,

and so by Lemma 3.2, we know that the highest-indexed matching containing an edge of C' must
contain at least 2 edges of C. We proceed to contradict this.

Let e, ¢ be the last edges of Q,,Qp respectively; see Figure 2a. These edges share an end-
point (since they are adjacent in C), and therefore they belong to different matchings. We will

graph, serves to upper bound the arboricity by Theorem 2.1. A similar framework has been used
in recent work on graph spanners; for example, [Bod25; BHP24] use this framework over related
(but more specific) types of paths.

For the rest of this section we assume we are given an n-node s-parallel greedy graph G =
(V, E) with m edges whose arboricity we aim to bound. Likewise, we let (M, ..., M) be an
ordered sequence of matchings that partition the edge set E, witnessing G is an s-parallel-greedy
graph. Also, for the rest of this section, we refer to a path with exactly s/2 edges as an 3-path
and for simplicity of presentation we assume that s is even; in the case where s is odd, the same
proof works with respect to *:L-paths (leading to the slightly-improved bound of O(s - n?/(s*+1)
mentioned previously).

The following formalizes the sense of monotonic paths we use.

Definition 3.1 (Monotonic Paths). A path P in G is monotonic if the edges in P occur in exactly the same
order as the matchings that contain these edges. In other words, let (e1, ez, . .., e;) be the edge sequence of
P, and let M;; be the matching that contains edge e; for each 1 < j < x. Then we say that P is monotonic
ifwe have iy < iy < -+ < ig.

The rest of this section proves Theorem 1.3 by counting the number of monotonic 5-paths.

3.1 Dispersion Lemma

Our dispersion lemma shows that monotonic 3-paths must be “dispersed” around the graph,

rather than be concentrated on one pair of endpoints. This lemma will use a slightly different
characterization of s-parallel-greedy graphs as below.

Lemma 3.2. For any cycle C of s-parallel-greedy graph G with |C| < s + 1 edges, if M; is the highest-
indexed matching that contains an edge of C, then there are least two edges from M; in C.

Proof. Suppose for the sake of contradiction that C only contained one edge {u, v} from M;. Then,
Gi-1:= (V,U,; M;) contains every edge other than {u, v} of C of which there are at most s so

do, ,(u,v) < s. @)
But, {u,v} € M; and G is s-parallel-greedy so dg;_, (u,v) > s which contradicts Equation (3.1). O

See Figure 1c for an illustration of this on a 12-parallel-greedy graph; in this graph, there are many
cycles with at most 13 edges but each such cycle has at least two edge from its highest-indexed
incident matching.

The following is our dispersion lemma.

Lemma 3.3 (Dispersion Lemma). For u,v € V, there is at most one monotonic 3-path from u to v in G.

Proof. Suppose for contradiction that there are two distinct 5-paths from u to v, P, and P;; see
Figure 2a. Then there exist contiguous subpaths Q, C P,,Q, C P, such that Q, U Q, forms a cycle
C'. Note that the number of edges in C satisfies

IC] < |Qal + |Qb| < |Pa| + | Po| = s,

and so by Lemma 3.2, we know that the highest-indexed matching containing an edge of C' must
contain at least 2 edges of C'. We proceed to contradict this.

Let e, e} be the last edges of Q,, Q» respectively; see Figure 2a. These edges share an end-
point (since they are adjacent in C), and therefore they belong to different matchings. We will

Proof. Let G’ be a uniform random edge-subgraph of G on exactly sn/2 edges. Let z be the number
of monotonic 3-paths in G, and let 2’ be the number of monotonic 3-paths that survive in G'. On
one hand, by the medium counting lemma (Lemma 3.5), we have 2’ > Q(n) (deterministically).
On the other hand, for any monotonic §-path P in G, the probability that P survives in G’ is

sn/2 snj2—1 snj2—(s/2—1)
m m—1 o m— (s/2—1)
SN—— N—— —————
probability first edge s selected in G’ probability second edge isselected in G, probability s/2t% edge is selected in G,
given first edge is selected in G given first 5/2 — 1 edges are selected in G’

which is
sn o\ $/2
< (om)
— \2m

-0 ()"

Qn) <Ez'] <z-0 (i)

a\/2
xzn-Q(f) s
8

3.3 Completing Our Arboricity Bound

Thus we have
/2

Rearranging, we get

as claimed.

We now complete our bound on the arboricity of s-parallel-greedy graphs by combining our dis-
persion lemma and full counting lemma.

Theorem 1.3 (Parallel-Greedy Graph Arboricity). If G is an n-node s-parallel-greedy graph, then G
has arboricity at most O(s - n*/*).

Proof. First, we claim that any n-node s-parallel greedy graph G has average degree at most O(s -
n%%). Let d be the average degree of G. By Lemma 3.3, there are O(n?) monotonic §-paths in G.
By Lemma 3.6, there are n - Q(d/s)*/? monotonic §-paths in G. Comparing these estimates, we

have
s/2
n-Q<d> < 0(n?).

s

Rearranging this inequality gives
d < O(s-n?*),
giving our claimed bound on the average degree of G.
To bound the arboricity of G, observe that any subgraph of an s-parallel greedy graph is itself
an s-parallel greedy graph. Combining this with our bound on the average degree of an s-parallel
greedy graph, we get that for any U C V we have

[EQW) < O(s- [UP**) - (U] = 1) < O(s - n**) - (U] - 1)

Applying Theorem 2.1, we get that the arboricity of G is at most O(s - n%*) as required.

10

Summarizing

Parallel Greedy| Easy casy | Existence of LC
Arboricity >| Uof Cuts " | Decompositions

