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Length-Constrained Expander Decompositions

Graph Decomposition Approach

1. Length-Constrained Expander Decomposition
add to graph edge length increases
to make it a length-constrained expander

. Solve Problem
solve problem on nice graph

. Clean Up
deal with modifications




Length-Constrained Expander Decompositions

Graph decomposition approach with LC EDs gives SOTA for:

e Approximate Min-Cost Multi-Commodity Flow

e Deterministic Distance Oracles

e (1 + €)-Approximate Parallel Min Cost Flow
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Sparse Length-Constrained Cuts

Sparse LC Cut
X length increases

X/¢ total degree

Note. Any (4, 5)-length ¢-sparse cut has size (i.e. X) at most ~¢pm (since ~X/¢ < m)



Length-Constrained Expanders

LC Expander

Flow View Informally. Easy for nearby nodes to send flow over short paths
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Proof Sketch of Our Result
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From U of Cuts to LC Expander Decompositions

Theorem .Any graph G has an (A, s)-length ¢p-expander
decomposition of size s - %)

Return C = 2 C,
Cis an (h, s)-length ¢-ED (no sparse cuts left)

0 But why is it small? ¢

U of Cuts . Cis an ~(h, s)-length

(snPU) . g)-sparse cut

Any (h, s)-length (sn®1S) . ¢h)-sparse cut has size at most s - n%VS) . pm

So C has size at most s - %) . hm
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The arboricity of a graph
is the minimum number

of forests needed to
cover all edges

Arboricity 2

PG Arboricity to U of Cuts . Cis (h,s)-length ag-sparse in G

where a is the arboricity of s-parallel-greedy graphs




Parallel Greedy Arboricity

A< SN

From Parallel Greedy Arboricity to U of Cuts

O(1/s)

where a is the arboricity of s-parallel-greedy graphs

~3 pages based on “dispersion/counting” framework.

graph, serves to upper bound the arboricity by Theorem 2.1. A similar framework has been used
in recent work on graph spanners; for example, [Bod25; BHP24] use this framework over related
(but more specific) types of paths.

For the rest of this section we assume we are given an n-node s-parallel greedy graph G =
(V, E) with m edges whose arboricity we aim to bound. Likewise, we let (M,..., M) be an
ordered sequence of matchings that partition the edge set E, witnessing G is an s-parallel-greedy
graph. Also, for the rest of this section, we refer to a path with exactly s/2 edges as an 3-path
and for simplicity of presentation we assume that s is even; in the case where s is odd, the same
proof works with respect to #1!-paths (leading to the slightly-improved bound of O(s - n% (++1))
mentioned previously).

The following formalizes the sense of monotonic paths we use.

Definition 3.1 (Monotonic Paths). A path P in G is monotonic if the edges in P occur in exactly the same
order as the matchings that contain these edges. In other words, let (e1, ez, . .., es) be the edge sequence of
P, and let M;, be the matching that contains edge e; for each 1 < j < x. Then we say that P is monotonic
ifwe have iy < iz < -+ < is.

The rest of this section proves Theorem 1.3 by counting the number of monotonic $-paths.

3.1 Dispersion Lemma

Our dispersion lemma shows that monotonic 3-paths must be “dispersed” around the graph,
rather than be concentrated on one pair of endpoints. This lemma will use a slightly different
characterization of s-parallel-greedy graphs as below.

Lemma 3.2. For any cycle C of s-parallel-greedy graph G with |C| < s + 1 edges, if M; is the highest-
indexed matching that contains an edge of C, then there are least two edges from M; in C.

Proof. Suppose for the sake of contradiction that C only contained one edge {u, v} from M;. Then,
Gi-1:= (V,U;<; M;) contains every edge other than {u,v} of C of which there are at most s so

dg, ,(u,v) <s. 3.1)
But, {u,v} € M;and G is s-parallel-greedy so dg;_, (u,v) > s which contradicts Equation (3.1). O

See Figure 1c for an illustration of this on a 12-parallel-greedy graph; in this graph, there are many
cycles with at most 13 edges but each such cycle has at least two edge from its highest-indexed
incident matching.

The following is our dispersion lemma.

Lemma 3.3 (Dispersion Lemma). For u,v € V, there is at most one monotonic 3-path from u to v in G.

Proof. Suppose for contradiction that there are two distinct %-paths from u to v, P, and Py; see
Figure 2a. Then there exist contiguous subpaths Q, C P, @, € P, such that Q, U Q, forms a cycle

C. Note that the number of edges in C satisfies
[C] < |Qal + @bl < |Pa| + | P5| = s,

and so by Lemma 3.2, we know that the highest-indexed matching containing an edge of C' must
contain at least 2 edges of C. We proceed to contradict this.

Let e, ¢ be the last edges of Q,,Qp respectively; see Figure 2a. These edges share an end-
point (since they are adjacent in C), and therefore they belong to different matchings. We will
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Proof. Suppose for contradiction that there are two distinct 5-paths from u to v, P, and P;; see
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Proof. Let G’ be a uniform random edge-subgraph of G on exactly sn/2 edges. Let z be the number
of monotonic 3-paths in G, and let 2’ be the number of monotonic 3-paths that survive in G'. On
one hand, by the medium counting lemma (Lemma 3.5), we have 2’ > Q(n) (deterministically).
On the other hand, for any monotonic §-path P in G, the probability that P survives in G’ is

sn/2 snj2—1 snj2—(s/2—1)
m m—1 o m— (s/2—1)
SN—— N—— —————
probability first edge s selected in G’ probability second edge isselected in G, probability s/2t% edge is selected in G,
given first edge is selected in G given first 5/2 — 1 edges are selected in G’

which is
sn o\ $/2
< (om)
— \2m

-0 ()"

Qn) <Ez'] <z-0 (i)

a\/2
xzn-Q(f) s
8

3.3 Completing Our Arboricity Bound

Thus we have
/2

Rearranging, we get

as claimed.

We now complete our bound on the arboricity of s-parallel-greedy graphs by combining our dis-
persion lemma and full counting lemma.

Theorem 1.3 (Parallel-Greedy Graph Arboricity). If G is an n-node s-parallel-greedy graph, then G
has arboricity at most O(s - n*/*).

Proof. First, we claim that any n-node s-parallel greedy graph G has average degree at most O(s -
n%%). Let d be the average degree of G. By Lemma 3.3, there are O(n?) monotonic §-paths in G.
By Lemma 3.6, there are n - Q(d/s)*/? monotonic §-paths in G. Comparing these estimates, we

have
s/2
n-Q<d> < 0(n?).

s

Rearranging this inequality gives
d < O(s-n?*),
giving our claimed bound on the average degree of G.
To bound the arboricity of G, observe that any subgraph of an s-parallel greedy graph is itself
an s-parallel greedy graph. Combining this with our bound on the average degree of an s-parallel
greedy graph, we get that for any U C V we have

[EQW) < O(s- [UP**) - (U] = 1) < O(s - n**) - (U] - 1)

Applying Theorem 2.1, we get that the arboricity of G is at most O(s - n%*) as required.
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