Lecture 3: LLL, Homework

1. For some practice with mutual dependence

Our definition of mutual independence has

Definition 1 (Mutual Independence). Event A is independent of events $\beta = \{B_1, \dots, B_m\}$ if

$$\Pr[A|\beta'] = \Pr[A]$$

for all $\beta' \subseteq \beta$

Show that this is equivalent to the following definition of mutual independence (noting the difference in β in this new definition).

Definition 2 (Mutual Independence'). Event A is independent of events $\beta = \{B_1, \dots, B_m, \bar{B_1}, \dots, \bar{B_m}\}$ if

$$\Pr[A|\beta'] = \Pr[A]$$

for all $\beta' \subseteq \beta$

2. For some practice with applying the LLL

Suppose 11n points are placed around a circle for $n \in \mathbb{N}$. Call this set S.

Definition 3 (Valid Coloring). A coloring (i.e. an assignment of colors to points) of 11n points is valid if it uses n colors, each one exactly 11 times.

Call a subset of our 11n points **rainbow** if each point is given a different color.

Say that two points $x, y \in S$ are **adjacent** if either there are no points in S between x and y or there are no points between y and x.

Prove that:

Lemma 1. In any valid coloring there is a rainbow set $S' \subseteq S$ of n points such that no two points in S' are adjacent.

3. For some practice with applying the LLL

We will apply the LLL to prove that certain edge-colorings of certain graphs always exist. Define the following notions of proper and acyclic edge-colorings.

Definition 4. An edge-coloring of G is an assignment of edges to colors.

Definition 5 (Proper Edge-Coloring). An edge-coloring is proper if no vertex is incident to two edges of the same color.

Definition 6 (Acyclic Edge-Coloring). An edge-coloring is acyclic if every two colors induce a forest.

Define a(G) as the minimum number of colors in an acyclic proper edge-coloring of graph G.

Alon, Sudakov and Zaks conjectured that $a(G) \leq \Delta(G) + 2$ where Δ is the max degree of G. They managed to show the following weaker claim which assumes the girth of a graph is large (defined below1).

Definition 7 (Girth). Define the girth of graph G, g(G), as the length of the shortest cycle in G.

Using the LLL, show that

Theorem 1. Provided $g(G) \geq \Omega(\Delta \log \Delta)$ we have $a(G) \leq \Delta(G) + 2$.

Hint: recall that Vizing's theorem states that every graph G has a proper edge-coloring $C: E \to [\Delta]$ using $\leq \Delta + 1$ colors. Consider starting with Vizing's coloring and then changing the color of each edge with probability p to a new $(\Delta + 2)$ th color, say red. Define bad events: A_B as two adjacent edges are colored red; A_C as a bichromatic cycle in C has no edges colored red; A_D as the cycle D is bichromatic in red and one of the colors of C.

4. To see how the symmetric and asymmetric LLL relate

There is an "asymmetric" version of the LLL which we didn't have time to get to today. This lemma states **Lemma 2** (Asymmetric LLL). Given bad events A_1, \ldots, A_m and a dependency graph as before if there exists an assignment to reals $x_i \in [0,1)$ such that $p_i < x_i \cdot \prod_{A_i \in \Gamma(A_i)} (1-x_j)$ for every A_i then $P[\wedge_i \bar{A}_i] > 0$.

Show that the the asymmetric LLL implies the symmetric LLL for the case where all p_i s are equal?

5. A question I don't know the answer to

Recall in class that we saw the following two lemmas:

Lemma 3. A k-SAT instance where each variable occurs in strictly fewer than $\frac{2^k}{ek}$ clauses is satisfiable. **Lemma 4.** For every k there exists a k-SAT formula where every variable occurs in 2^k clauses which is not satisfiable.

A nice question which Ziye asked is whether there exist k-SAT formulas where every variable occurs in at most $\frac{2^k}{k}$ clauses which are not satisfiable. Give some thought to this question as well as, more broadly, which of 2^k and $\frac{2^k}{e^k}$ are tight for the above bounds.