
Lecture 3: LLL, Homework

1. For some practice with mutual dependence

Our definition of mutual independence has
Definition 1 (Mutual Independence). Event A is independent of events β = {B1, . . . , Bm} if

Pr[A|β′] = Pr[A]

for all β′ ⊆ β

Show that this is equivalent to the following definition of mutual independence (noting the difference in β in
this new definition).
Definition 2 (Mutual Independence’). Event A is independent of events β = {B1, . . . , Bm, B̄1, . . . , B̄m} if

Pr[A|β′] = Pr[A]

for all β′ ⊆ β

2. For some practice with applying the LLL

Suppose 11n points are placed around a circle for n ∈ N. Call this set S.
Definition 3 (Valid Coloring). A coloring (i.e. an assignment of colors to points) of 11n points is valid if it uses
n colors, each one exactly 11 times.

Call a subset of our 11n points rainbow if each point is given a different color.

Say that two points x, y ∈ S are adjacent if either there are no points in S between x and y or there are no
points between y and x.

Prove that:
Lemma 1. In any valid coloring there is a rainbow set S′ ⊆ S of n points such that no two points in S′ are
adjacent.

3. For some practice with applying the LLL

We will apply the LLL to prove that certain edge-colorings of certain graphs always exist. Define the following
notions of proper and acyclic edge-colorings.
Definition 4. An edge-coloring of G is an assignment of edges to colors.
Definition 5 (Proper Edge-Coloring). An edge-coloring is proper if no vertex is incident to two edges of the
same color.
Definition 6 (Acyclic Edge-Coloring). An edge-coloring is acyclic if every two colors induce a forest.

Define a(G) as the minimum number of colors in an acyclic proper edge-coloring of graph G.

Alon, Sudakov and Zaks conjectured that a(G) ≤ ∆(G) + 2 where ∆ is the max degree of G. They managed
to show the following weaker claim which assumes the girth of a graph is large (defined below1).
Definition 7 (Girth). Define the girth of graph G, g(G), as the length of the shortest cycle in G.

Using the LLL, show that
Theorem 1. Provided g(G) ≥ Ω(∆ log ∆) we have a(G) ≤ ∆(G) + 2.
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Hint: recall that Vizing’s theorem states that every graph G has a proper edge-coloring C : E → [∆] using
≤ ∆ + 1 colors. Consider starting with Vizing’s coloring and then changing the color of each edge with
probability p to a new (∆ + 2)th color, say red. Define bad events: AB as two adjacent edges are colored red;
AC as a bichromatic cycle in C has no edges colored red; AD as the cycle D is bichromatic in red and one of
the colors of C.

4. To see how the symmetric and asymmetric LLL relate

There is an “asymmetric” version of the LLL which we didn’t have time to get to today. This lemma states
Lemma 2 (Asymmetric LLL). Given bad events A1, . . . , Am and a dependency graph as before if there exists
an assignment to reals xi ∈ [0, 1) such that pi < xi ·

∏
Aj∈Γ(Ai)

(1− xj) for every Ai then P [∧iĀi] > 0.

Show that the the asymmetric LLL implies the symmetric LLL for the case where all pis are equal?

5. A question I don’t know the answer to

Recall in class that we saw the following two lemmas:
Lemma 3. A k-SAT instance where each variable occurs in strictly fewer than 2k

ek clauses is satisfiable.
Lemma 4. For every k there exists a k-SAT formula where every variable occurs in 2k clauses which is not
satisfiable.

A nice question which Ziye asked is whether there exist k-SAT formulas where every variable occurs in at most
2k

k clauses which are not satisfiable. Give some thought to this question as well as, more broadly, which of 2k

and 2k

ek are tight for the above bounds.
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