Lecture 3: LLL, Homework

1. For some practice with mutual dependence

Our definition of mutual independence has
Definition 1 (Mutual Independence). Event A is independent of events 8 = {B1,..., By} if

Pr{A|] = Pr[4]

forall ' C 8

Show that this is equivalent to the following definition of mutual independence (noting the difference in S in
this new definition). ~ ~
Definition 2 (Mutual Independence’). Event A is independent of events 3 = {B1,...,Bm, B1,...,Bn}if

Pr{A|] = Pr[4]

forall ' C 8
2. For some practice with applying the LLL

Suppose 11n points are placed around a circle for n € N. Call this set S.
Definition 3 (Valid Coloring). A coloring (i.e. an assignment of colors to points) of 11n points is valid if it uses
n colors, each one exactly 11 times.

Call a subset of our 11n points rainbow if each point is given a different color.

Say that two points x,y € S are adjacent if either there are no points in S between x and y or there are no
points between y and x.

Prove that:
Lemma 1. In any valid coloring there is a rainbow set S’ C S of n points such that no two points in S’ are
adjacent.

3. For some practice with applying the LLL

We will apply the LLL to prove that certain edge-colorings of certain graphs always exist. Define the following
notions of proper and acyclic edge-colorings.

Definition 4. An edge-coloring of G is an assignment of edges to colors.

Definition 5 (Proper Edge-Coloring). An edge-coloring is proper if no vertex is incident to two edges of the
same color.

Definition 6 (Acyclic Edge-Coloring). An edge-coloring is acyclic if every two colors induce a forest.

Define a(G) as the minimum number of colors in an acyclic proper edge-coloring of graph G.

Alon, Sudakov and Zaks conjectured that a(G) < A(G) + 2 where A is the max degree of G. They managed
to show the following weaker claim which assumes the girth of a graph is large (defined below1).
Definition 7 (Girth). Define the girth of graph G, g(G), as the length of the shortest cycle in G.

Using the LLL, show that
Theorem 1. Provided g(G) > Q(Alog A) we have a(G) < A(G) + 2.



Hint: recall that Vizing’s theorem states that every graph G has a proper edge-coloring C : E — [A] using
< A + 1 colors. Consider starting with Vizing’s coloring and then changing the color of each edge with
probability p to a new (A + 2)th color, say red. Define bad events: Ap as two adjacent edges are colored red;
Ac as a bichromatic cycle in C has no edges colored red; Ap as the cycle D is bichromatic in red and one of
the colors of C.

. To see how the symmetric and asymmetric LLL relate

There is an “asymmetric” version of the LLL which we didn’t have time to get to today. This lemma states
Lemma 2 (Asymmetric LLL). Given bad events Ay, ..., Ay, and a dependency graph as before if there exists
an assignment to reals x; € [0,1) such that p; < x; - HAjeF(Ai) (1 — ;) for every A; then P[N\;A;] > 0.

Show that the the asymmetric LLL implies the symmetric LLL for the case where all p;s are equal?
. A question I don’t know the answer to

Recall in class that we saw the following two lemmas:

Lemma 3. A k-SAT instance where each variable occurs in strictly fewer than g clauses is satisfiable.
Lemma 4. For every k there exists a k-SAT formula where every variable occurs in 2% clauses which is not
satisfiable.

A nice question which Ziye asked is whether there exist k-SAT formulas where every variable occurs in at most
2% clauses which are not satisfiable. Give some thought to this question as well as, more broadly, which of 2*

%
and i—k are tight for the above bounds.



